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Abstract

A class of explicit multistage time-stepping schemes with centered
spatial di�erencing and multigrid is considered for the compressible
Euler and Navier-Stokes equations. These schemes are the basis for
a family of computer programs (ow codes with multigrid (FLOMG)
series) currently used to solve a wide range of uid dynamics prob-
lems, including internal and external ows. In this paper, the com-
ponents of these multistage time-stepping schemes are de�ned, dis-
cussed, and in many cases analyzed to provide additional insight into
their behavior. Special emphasis is given to numerical dissipation,
stability of Runge-Kutta schemes, and the convergence-acceleration
techniques of multigrid and implicit residual smoothing. Both the
Baldwin and Lomax algebraic equilibrium model and the Johnson
and King one-half equation nonequilibrium model are used to estab-
lish turbulence closure. Implementation of these models is described.

1. Introduction

Computational uid dynamics (CFD) is a multidisciplinary �eld involving uid mechanics,
numerical analysis, and computer science . The evolution of CFD over the last three decades has

fostered a broad range of methods for computing the aerodynamics of ight vehicles. At cruise
ight conditions, a variety of approximate techniques are applied by the aircraft industry when
designing ight vehicles.

With inviscid and irrotational ow assumptions, versatile and reliable panel methods and

nonlinear potential equation solvers are used for aircraft design. To determine viscous e�ects,
either an integral or �nite-di�erence approach is employed to solve the boundary-layer equa-

tions. When the interaction between the viscous and inviscid ow regions is important, the
computational procedures for these regions are coupled in either the direct mode (i.e., surface
pressure is speci�ed) or the inverse mode (i.e., surface shear stress in the case of a solid wall is

speci�ed). Although these computational techniques are e�cient and usually provide reasonable
estimates of viscous e�ects, they can be di�cult to implement for three-dimensional (3-D) ows

when strong viscous-inviscid interactions occur (such as aircraft wing and body juncture ow).

In the past few years, substantial improvements were made on the mathematical models of
aerodynamic prediction techniques used for aircraft design. The Euler equations allow rotational

e�ects (i.e., vortical structures) and nonisentropic shock waves and thus provide a better inviscid
model for ows over aerodynamic con�gurations. The Navier-Stokes equations model weak and
strong interactions between viscous and inviscid ow regionswithout special consideration. Both

the Euler and the time-averaged Navier-Stokes equations are currently being introduced into the
aircraft design process.

Progress in aircraft design can be attributed to several factors. A primary factor is the

considerable improvement in the accuracy and e�ciency ofnumerical algorithms used to solve the
Euler and Navier-Stokes equations. Another factor is the signi�cant advancements in computer
memory capacity and processing times. Although new technologies in computers and computer

science will continue to help decrease processing times, the need stil l exists for strong e�ort to
increase the robustness, accuracy, and e�ciency of the ow solvers to allow their use in analysis

of complex uid dynamics phenomena and aircraft design.

An extensive range of numerical algorithms was developed during the last decade to solve
the Euler and Navier-Stokes equations. These numerical algorithms can be classi�ed by

the type of time-stepping scheme and the type of spatial-discretization scheme used. Both



explicit and implicit time-stepping schemes have been constructed. Explicit schemes require
less computational storage and a lower number of operations for time integration, but have a

stricter limit on the allowable time step. If temporal and spatial di�erencing are decoupled,
both schemes are amenable to a variety of convergence-acceleration techniques for steady-state

problems. The explicit multistage Runge-Kutta scheme of Jameson, Schmidt, and Turkel (ref. 1)
and the implicit approximate factorization (AF) scheme of Beam and Warming (ref. 2) are two
schemes that employ temporal and spatial decoupling. The multistage schemes, in conjunction

with local time stepping and other convergence enhancements (ref. 3), and the AF scheme, with
local time stepping and diagonalization of the implicit operator (ref. 4), are e�cient schemes for

the Euler equations.

Central and one-sided di�erencing have been considered for the spatial derivatives in the ow

equations. When selecting one type of di�erencing over another, it is important to understand
the dominating design criterion for central and upwind schemes. When constructing a central
di�erence scheme, the principal underlying guideline is to minimize the arithmetic operation

count while simultaneously maintaining the highest possible accuracy. The multistage schemes
and Lax-Wendro� schemes (refs. 5{11) are currently the most widely used explicit algorithms

with central spatial di�erencing. The AF scheme is the most frequently used implicit scheme
with centered di�erencing.

A primary objective of an upwind scheme is to capture ow discontinuities such as shock

waves using the minimum number of mesh cells. To accomplish this, many upwind schemes
utilize the signs of the slopes of characteristics to determine the direction of propagation of

information, and thus, the type of di�erencing for approximating spatial derivatives. Two
procedures for constructing upwind schemes for hyperbolic systems of conservation laws are
the ux vector splitting scheme of Van Leer (ref. 12) and the ux di�erence splitting scheme of

Roe (ref. 13). Upwind schemes have become popular because of their shock-capturing capability.
Generally, upwind schemes represent shock waves with two interior cells rather than the three or

four interior cells usually needed by central di�erence schemes. However, upwind schemes can
require as much as twice the computational e�ort.

Multistage time-stepping schemes with central di�erencing for spatial discretization on both
structured and unstructured meshes are nowbeing used to solve the Euler equations for ows over
complex con�gurations, including airplanes (refs. 14 and 15). Members of this class of algorithm

have also been extended to allow the solution of the compressible Navier-Stokes equations in
both two and three dimensions (refs. 16 and 17). Including convergence-acceleration methods,

such as local time stepping and constant coe�cient implicit residual smoothing (which extends
the explicit time step limit), has made these solvers reasonably e�ective. Signi�cant performance
improvements are achieved principally by using the multistage scheme as a driver of a multigrid

method. The multigrid method involves a sequence of successively coarser meshes and enhances
the convergence rate and the robustness of the single-grid scheme. In reference 18, a three-
stage Runge-Kutta scheme with multigrid was successfully applied to the two-dimensional (2-D)

Navier-Stokes equations. Then, both Swanson and Turkel (ref. 19) and Martinell i and Jameson
(ref. 20) demonstrated that the type of convergence behavior described in reference 18 could be

substantially improved. The multigrid procedure was used to solve ow over a wing (ref. 21).
Signi�cant performance improvements detailed in reference 21 were obtained (refs. 22 and 23)
by closely following and extending the ideas developed in the 2-D solvers (refs. 19, 20, and 24).

This paper describes an e�cient and versatile class of central di�erence, �nite-volume
multigrid schemes for the 2-D compressible Euler and Navier-Stokes equations. The elements of

these schemes are the basis for a family of computer codes (ow codes with multigrid (FLOMG)
series) developed by the authors that are now being used in both industry and universities.

These computer codes have been applied to numerous uid dynamics problems over the last
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several years, and have been employed as an analysis code in airfoil design procedures (ref. 25).
The primary purpose of this paper is to discuss, and in many instances, analyze, the components

of the schemes in these codes.

Sections 2 and 3 of this report give the ow equations and describe the �nite-volume

formulation for spatial discretization. Three alternatives for numerical approximation of viscous
stress and heat ux terms are discussed, and the inuence of grid stretching on numerical

accuracy is determined.

Section 4 of this report discusses arti�cial dissipation. After outlining the historical devel-

opment of a form for dissipation, the scalar dissipation model frequently used with the present
schemes is given in section 4.2. The selection of boundary-point di�erence operators is an impor-
tant consideration for the dissipation model. Suitable operators are given, and how local mode

analysis can often provide an evaluation for a proposed boundary-point di�erence operator is
shown. Analysis based on considering the dissipative character of the discrete system of equa-

tions is also performed. Section 4.5 examines the intimate connection between the formulation
of an upwind scheme and a central di�erence scheme, and a foundation for a matrix dissipation
model is established. Section 4.6 describes the matrix dissipation model used with the present

schemes.

Section 5 discusses the discrete boundary conditions. Section 6 de�nes the class of explicit

multistage time-stepping schemes considered and summarizes their properties. Next, the
stability of Runge-Kutta schemes for systems of equations is examined. Subsequently, a time-
step estimate for pseudotime integration of the ow equations is given. Since the temporal

and spatial discretizations are decoupled, these explicit schemes are amenable to convergence-
acceleration techniques. Section 7 addresses techniques used in this report, including local time

stepping, implicit residual smoothing, and multigrid. The initial part of section 7 indicates how
the discrete system of ow equations is preconditioned with local time stepping. Section 7.2 �rst
discusses constant coe�cients for implicit residual smoothing, and also presents basic properties

of residual smoothing. Next, a form for variable coe�cients for implicit residual smoothing
based on stability analysis of a 2-D linear wave equation is introduced. From this form, two

di�erent formulas for variable smoothing coe�cients evolve, and these formulas are compared.
These variable smoothing coe�cients stil l generally require a time-step estimate that depends
on a di�usion limit. The last part of section 7.2 shows how to use variable smoothing coe�cients

to construct new coe�cients that can allow removal of the di�usion restriction. Section 7.3
describes the basic elements of multigrid methods and delineates the salient features of the

present multigrid algorithm.

Section 8 discusses turbulence modeling. Both an algebraic equil ibrium model and a half-

equation nonequilibrium model are considered. Details for implementation of the turbulence
models are given. Section 9 states concluding remarks.

2. Mathematical Formulation

In this section the integral form of the full Navier-Stokes equations is de�ned. Boundary

conditions for the in�nite domain problem are then given to complete the general mathematical
formulation. Section 3 discusses the discrete analogue of the full Navier-Stokes equations,
section 4 introduces the reduced form of these equations that is frequently solved in aerodynamic

applications, and section 5 gives boundary conditions for the truncated (�nite) domain problem.

2.1. Equations

Let � denote the density, u and v represent velocity components in the x and y Cartesian

directions, respectively; p is pressure, T is temperature, E is speci�c total internal energy, and
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H is speci�c total enthalpy. If body forces and heat sources are neglected, the 2-D, unsteady
Navier-Stokes equations can be written in conservative form in a Cartesian coordinate system

as
@

@t

ZZ
V

WdV +

Z
S
F � n dS = 0 (2:1:1)

where t is time, V is the region being considered,

W =

2
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Q = krT = k

�
@T

@x
ex+

@T

@y
ey

�

E = e +
1

2
(u2 + v2)

H = E +
p

�

Here, ex and ey are unit vectors of the Cartesian coordinate system (x;y), and n is an outward-
pointing unit vector normal to the curve S enclosing the region V. Air is the working uid used

in this paper. The air is assumed to be thermally and calorically perfect. The equation of state
is

p = �RT (2:1:2)

where R = �cp � �cv , and the speci�c heats �cp and �cv are constant. The quantities � and �

are the �rst and second coe�cients of viscosity, respectively, and � is taken to be �2
3� (Stokes

hypothesis). Either a simple power law or Sutherland's law can be used to determine the

molecular viscosity coe�cient �. The coe�cient of thermal conductivity k is evaluated using
the constant Prandtl number assumption. The e�ect of turbulence is accounted for by using the

eddy-viscosity hypothesis. (See section 8 on turbulence modeling.)
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2.2. Physical Boundary Conditions

In the continuum case, either an external or an internal ow problem de�ned for an in�nite
domain is considered. Thus, appropriate conditions at wall boundaries, which are assumed to

be solid, must be de�ned. Later, in the discrete case, �nite domains are de�ned. Suitable inow
and outow boundary conditions must then be de�ned.

For inviscid ows, the tangency (or nonpenetration) condition

q � n = 0 (2:2:1)

must be satis�ed, where q is the velocity vector and n is the unit vector normal to the surface.

Now, consider the vector momentum equation

�
Dq

Dt
= �rp (2:2:2)

where Dq=Dt denotes the substantial derivative of q , and r is the gradient operator. Clearly,
the substantial derivative of q � n must vanish along the surface boundary. Therefore

�

�
@

@t
+ q � r

�
(q � n) = 0 (2:2:3)

If the inner product of the unit normal and equation (2.2.2) is subtracted from equation (2.2.3),

then
�q � (q � r)n = n � rp (2:2:4)

Now, consider the transformation (x; y) ! (�; �), take �(x; y) = constant to coincide with

the surface boundary, and note that the contravariant velocity component V = �(y� =J
�1)u+

(x�=J
�1) v (where the subscripts mean di�erentiation and J is the transformation Jacobian) is

zero because of equation (2.2.1). Then, from equation (2.2.4)

p� =
1�

x2� + y2�

� ��
x�x� + y� y�

�
p� +

�
y�u� x�v

��
�vx�� � �uy��

��
(2:2:5)

For viscous ows, the nonpenetration condition (eq. (2.2.1)) and the no-slip condition

q � t = 0 (2:2:6)

(where t is the unit vector tangent to the surface) must be satis�ed. In addition, a boundary
condition is required to determine the surface temperature. For this boundary condition either
the wall temperature is set to a speci�ed value or the adiabatic condition

Q � n = 0 (2:2:7)

is imposed, where Q is the heat ux vector given in equation (2.1.1).

3. Spatial Discretization

A �nite-volume approach is applied to discretize the equations of motion. The computational

domain is divided into quadrilateral cells that are �xed in time. For each cell , the governing
equations can be nondimensionalized and written in integral form as follows:

@

@t

ZZ


W dx dy +

Z
@


(F dy �G dx) =

p
M

Re

Z
@


(Fv dy �Gv dx) (3:1)
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where 
 is a generic cell (or cell area) with @
 the cell boundary. In the scaling factor for the
viscous terms on the right side of equation (3.1), the quantities  , M , and Re are the speci�c heat

ratio, Mach number, and Reynolds number, respectively, with M and Re de�ned by nominal
conditions. These factors arise because of the choice of nondimensionalization of the equations.

The ux vectors are de�ned by

F =

2
66664

�u

�u2 + p

�uv

�uH

3
77775

G =

2
66664

�v

�uv

�v2 + p

�vH

3
77775

Fv =

2
6664

0

�x
�xy

u�x + v�xy � k
@T

@x

3
7775

Gv =

2
6664

0
�yx
�y

u�yx + v�y � k
@T

@y

3
7775

The independent variables x, y , and t are nondimensionalized as

x=
~x

~lref

y =
~y

~lref

t = ~t
~uref
~lref

where ~uref =
p
~pref=~�ref, and the tilde in this section represents a dimensional variable.

Examples of a reference length are the chord for an airfoil and the throat height for a nozzle
ow. The thermodynamic variables p, �, and T and the transport coe�cients � and k are

nondimensionalized by their corresponding quantity evaluated at some reference condition. The
velocity components are scaled by ~uref , and the total quantities E and H are scaled by ~u2

ref
. For

external ows, the nominal conditions are based on free-stream values, and for internal ows,
the nominal conditions are based on stagnation values.

Partition the computational region with quadrilaterals and apply equation (3.1) to each
quadrilateral. This process is equivalent to performing a mass, momentum, and energy balance

on each cell. A system of ordinary di�erential equations is obtained by decoupling the temporal
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and spatial terms. In particular, consider an arbitrary quadrilateral (�g. 1, ABCD), and
approximate the line integrals of equation (3.1) with the midpoint rule. Let the indices (i; j)

identify a cell . Then, by taking W i;j as the cell-averaged solution vector, equation (3.1) can be
written in semidiscrete form as

d

dt
(
i;jWi;j) + LWi;j = 0 (3:2)

where 
i;j is the area of the cell , and L is a spatial discreti zation operator de�ned by

L = LC + LD + LAD, with the subscripts C, D, and AD referring to convection, di�usion,
and arti�cial dissipation, respectively. The convective uxes at the cell faces are obtained by an

averaging process. The convective ux balance is computed by summing over the cell faces as

LCWi;j =

4X

l=1

(FC)l � Sl (3:3)

with the ux tensor associated with convection given by (FC)l = Flex+Gley; and for each cell

face l, the directed length Sl is expressed as

Sl = (�y)l ex � (�x)l ey (3:4)

where the proper signs of (�x)l and (�y)l produce an outward normal to the cell face. The

augmented, convective ux tensor is evaluated as

(FC)l =
1

2
(W�q� +W+q+)l + Pl (3:5)

j

i - 1 i i + 1

j - 1

j + 1
B

C

B'
C'

D'
A'

D
A

Figure 1. Finite-volume discretization.
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where

Pl =
�
0 (pavg)lex (pavg)ley ((pq)avg)l

�T

(pavg)l =
1

2
(p� + p+)

l

((pq)avg)l =
1

2
(p�q� + p+q+)l

and the superscripts minus (�) and plus (+) indicate quantities taken from the two cell centers

adjacent to the edge l. The symbol q denotes the velocity vector. In this section, the subscript
avg always refers to the simple average de�ned in equation (3.5) for a given edge l.

The contribution of the di�usive uxes in equation (3.2) is evaluated as

LDWi;j =

4X
l=1

(FD)l � Sl (3:6)

where Sl is given by equation (3.4), and (FD)l = (Fv)l ex + (Gv)ley. First-order spatial

derivatives are in the ux vectors Fv and Gv . In the present �nite-volume method, these
derivatives are determined using Green's theorem. For example, consider the cell face BC in
�gure 1. The contributions ux and uy to the viscous ux across BC are approximated by their

mean values as follows:

(ux)i ;j+1=2 = (ux)BC =
1


0

ZZ

0

ux dx dy

=
1


0

Z
@
0

u dy (3:7)

�
uy
�
i ;j+1=2

=
�
uy
�
BC

=
1


0

ZZ

0
uy dx dy

= �
1


0

Z
@
0

u dx (3:8)

where 
0 is the area of an appropriate auxiliary cell .

Three alternatives for computing the di�usion-type terms have been considered. The �rst
two approximations for a di�usive ux are obtained with �nite-volume methods, and the third
approximation is determined with a frequently used method based on a local transformation of

coordinates. A comparison is now made between these three choices.

For the comparison, consider the molecular transport processes associated with cell face BC

for the x-momentum equation only. Let �BC = [(FD)BC � SBC]2 =
�
�x �y � �yx �x

�
BC

. In

one �nite-volume method the integration path A0B 0C 0D 0 (�g. 1) used in references 16 and 26 is

considered. Applying the midpoint rule for the required line integrals results in

�BC =
�avg


0

�
�1ui;j+1 + �2ui;j + �3uB + �4uC

�

+
�avg


0

�
�5vi;j+1 + �6vi;j + �7vB + �8vC

�
(3:9)
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where

�1 =
4

3
�yBC �yB0C 0

+ �xBC �xB0C 0

�2 =
4

3
�yBC �yD 0A0

+ �xBC �xD0A 0

�3 =
4

3
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4
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�yBC �xD0A 0
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2

3
�yBC �xA0B0 ��xBC �yA 0B0

�8 =
2

3
�yBC �xC0D 0

��xBC �yC 0D 0

uB =
1

4

�
ui;j + ui+1;j + ui;j+1 + ui+1;j+1

�

uC =
1

4

�
ui;j + ui�1;j + ui;j+1 + ui�1;j+1

�

with vB and vC de�ned similarly, and

�xBC = xC � xB

�yBC = yC � yB

�avg =
1

2

�
�i;j + �i;j+1

�


0 =
1

2

�

i ;j + 
i ;j+1

�

Martinelli (ref. 27) introduced a di�erent integration path for calculating the viscous terms

(delineated as BFCE in �g. 2). Integrating around the boundary BFCE with the trapezoidal
rule results in

�BC =
�avg

2
00

��
4

3
�y2BC + �x2BC

�
(ui;j+1 � ui;j)�

�
1

3
�xBC �yBC

�
(vi;j+1� vi;j )

�

+
�avg

2
0 0

��
4

3
�yEF �yBC + �xEF �xBC

�
(uB � uC)

�

+
�avg

2
0 0

��
2

3
�xEF �yBC ��yEF �xBC

�
(vB � vC)

�
(3:10)
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F

B

E

D
A

Figure 2. Alternative integration path for physical di�usive uxes.

where

�xEF = xi;j+1 � xi;j

�yEF = yi;j+1� yi;j

and 
00 is the area of the region enclosed by BF CE . The area 
00 is given by


00=
1

2
(�xCB �yEF ��xEF �yCB )

All other quantities in equation (3.10) are de�ned the same as in equation (3.9). The form of

�BC given by equation (3.10) is much more compact, requiring fewer arithmetic operations than

the form of �BC given by equation (3.9).

A third approach for computing the di�usion-type terms is based on a local transformation

from Cartesian coordinates (x; y) to arbitrary curvilinear coordinates (�; �). Derivatives with

respect to x and y are expanded according to the chain rule for partial di�erentiation. The

resulting relation for �BC is as follows:

�BC =
�avg


0

��
4

3
�yCBy� +�xCBx�

�
u� +

�
2

3
�yCBx� ��xBCy�

�
v�

�
BC

+
�avg


0

��
4

3
�yBCy� +�xBCx�

�
u� +

�
2

3
�yBCx� ��xBCy�

�
v�

�
BC

(3:11)

where
x� = �xCB

y� = �yCB

x� = �xEF

y� = �yEF
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With a uniformly spaced computational domain (�� = �� = 1), �BC in equation (3.11) is the

same as �BC in equation (3.10), except for the area factor. For a Cartesianmesh, the expressions

for �BC in equations (3.9), (3.10), and (3.11) are equivalent. If the streamwise-l ike di�erences

associated with the viscous ux quantities are neglected, which is the thin-layer Navier-Stokes

assumption, only the terms inside the �rst set of brackets are retained.

Note that with the thin-layer formulation, there are viscous contributions to the uxes at

faces BC and DA only. The following vector approximates the integrand of the right side of

equation (3.1) at cell faces BC and DA :

�l =

2
64

0

�1
�2

uavg�1 + vavg�2 + ~Q

3
75
l

where

�1 =
�avg


avg

�
�1u� � �2v�

�

�2 =
�avg


avg

�
�3v� � �2u�

�

~Q =
�avg

P r 
avg

�


 � 1

�
�4T�

�1 =
4

3
y2� + x2�

�2 =
1

3
x�y�

�3 =
4

3
x2� + y2�

�4 = x2� + y2�

Unless otherwise indicated in the text, the thin-layer form of the equations is solved.

Signi�cant di�erences in the numerical solutions have not been observed when applying the

three methods for approximating the di�usive terms. Notable di�erences in the numerical

solutions were not expected when solving the Navier-Stokes (thin-layer or full) equations on

su�ciently smooth meshes (i.e., meshes without kinks or sudden jumps in mesh intervals). In

this paper the integration path of Martinelli (ref. 27) is used in the �nite-volume method for

computing the viscous uxes. With this choice of integration path (ref. 27), the mean values of

the viscous stresses for a given cell edge are obtained at the midpoint of the edge, even when

there is a kink in the grid. This is not true for the path used in equation (3.9). Also, with the

integration path of equation (3.10), there are fewer arithmetic operations required than with the

path of equation (3.9).

Theoretical estimates of the order of accuracy of the cell-averaged scheme are now introduced

based on one-dimensional (1-D) analysis using Taylor-series expansions. Consider the coordinate

grid around the location denoted by the index i (�g. 3). Let � be a test function. The numerical

values of the �rst and second derivatives of this function are then given by

(�x)num =
1

2
�x

�x+ + �x
�

�x
+
1

4
�xx

�x2+ ��x2
�

�x
+ O(�x2) (3:12)
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∆x∆x– –

i + 1i – 1 i

∆x+ +

∆x– ∆x+

Figure 3. One-dimensional discretization for three-point cell-centered scheme.

and

(�xx)num =
1

2
�xx

�x+�x�

�x
+

1

6
�xxx

�x2+ ��x2�
�x

+
1

24
�xxxx

�x3+ +�x3�
�x

+O(�x3) (3:13)

respectively, where the derivatives in the expansions are evaluated at i. The approximations of
equations (3.12) and (3.13) are zeroth-order accurate on arbitrarily stretched meshes. However,

assuming a constant stretching factor of the grid (i.e., � = �x++=�x= constant), the following
relations are obtained:

�x�� = �x
1

�

�x� =
1

2
�x

�
1+

1

�

�

�x++ = �x �

�x+ =
1

2
�x (1 + �)

9>>>>>>>>>>>=
>>>>>>>>>>>;

(3:14)

For viscous ows, grids with constant stretching factor � are often used. If these grids are re�ned
by doubling the number of points, then

�f =
p
�c < 1 +

�c � 1

2

where � � 1 and the subscripts f and c refer to �ne and coarse grids, respectively. To estimate
the error reduction when re�ning the stretched mesh, the approximation

� � 1+C� �x (3:15)

is used. Then, if the quantities in equations (3.14) and (3.15) are substituted into equations (3.12)

and (3.13), respectively, the result is

(�x)num = �x +
1

4
�x
�
C� �x

�2
+

1

2
C��xx�x2 +O(�x2) (3:16)
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and

(�xx)num = �xx +
1

4
�xx

�
C� �x

�2
+
1

3
C��xxx�x

2 +
1

12
�xxxx�x

2 + O(�x3) (3 :17)

respectively, for �x << 1. Thus, second-order accuracy is achieved for the inviscid and viscous
terms in the ow equations on smoothly stretched meshes. Additional discussion of accuracy is
found in reference 28.

4. Arti�cial Dissipation

The basic �nite-volume scheme described in section 3 contains no dissipative terms in the
case of inviscid ows. To prevent oscillations near shock waves or stagnation points, arti�cial

dissipation terms are added to the governing discrete equations. The introduction of appropriate
dissipation in the vicinity of shock waves satis�es an entropy condition. In gas dynamics, an
entropy condition can be the second law of thermodynamics, which states that the physical

entropy cannot decrease. The entropy condition guarantees the uniqueness of weak solutions
(i.e., solutions containing shock waves) and thus ensures a physically correct solution. (See
ref. 29 for further discussion.)

Another type of dissipation term is added to the discrete ow equations. This term is included
to provide background dissipation, which is important for converging the numerical scheme that

will be used to compute ow solutions. These dissipation terms also prevent odd-even point
decoupling (i.e. , creation of sawtooth, or plus-minus waves, with wavelength of two times the

mesh spacing). For viscous ows, dissipative properties are present because of di�usive terms.
However, because of the nonlinearity of the equations of motion, the physical dissipation may
not be su�cient to guarantee stability, especially for the highly stretched meshes generally used

to resolve the steep gradients in shear layers. Thus, arti�cial dissipation is also included in
viscous regions to maintain the stability and robustness of the numerical procedure.

In this section some historical information regarding the form of the arti�cial (or numerical)
dissipation model used with many central di�erence schemes is discussed. This discussion

describes how the model evolved, and provides a rudimentary understanding of the model.
Next, the basic dissipation formulation and various modi�cations that have been investigated
are discussed. Boundary-point di�erence stencils are required for the dissipation model. Several

stencils are considered and analyzed. Next, the intimate connection between the formulation
for an upwind scheme and a central di�erence scheme is examined, establishing a foundation for
a matrix dissipation model. Section 4.6 presents the matrix dissipation model currently used.

This model relies upon characteristic decomposition of a ux vector.

4.1. Development of Dissipation Form

To simplify the historical notes in this section, consider the 1-D system of hyperbolic

equations (@W=@t) + (@F=@x) = 0, where W and F are three-component state and ux vectors,
respectively. Let the 1-D domain be partitioned by intervals de�ned by �x = xi+1=2 � xi�1=2,
where the indices refer to interface points for adjacent intervals. Suppose the Lax-Wendro�

scheme is applied as follows:

Wn+1 = Wn
� � (Fi+1=2 � Fi�1=2) (4:1:1)

where the superscript n indicates time level, � = �t=�x, and the interface ux is

Fi+1=2 = FLWi+1=2 =
1

2
(Fi + Fi+1)�

1

2
�A2

i+1=2(W i+1�W i) (4:1:2)
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with A representing the ux Jacobian matrix (an element Ajk = @Fj=@Wk). All quantities are
evaluated at time level n unless noted otherwise.

In the initial work of computing ows with shock waves by using the Lax-Wendro� scheme,
the solutions contained oscil lations in the vicinity of the shock wave. Then, Von Neumann and

Richtmyer (ref. 30) introduced an additional dissipation term to remove shock wave oscillations.
Including this term, equation (4.1.2) is rewritten as

Fi+1=2 = F
LW
i+1=2

� d
(2)
i+1=2

(Wi+1 �Wi)

or in the continuum

F = F� ��x d(2)
@W

@x
= F� � D(2)

where F� is the physical ux function. The term d(2) is often called an arti�cial (or numerical)

viscosity and plays the role of a control function. Hirsch (ref. 29) showed that the form of D(2)

considered by Von Neumann and Richtmyer (ref. 30) can be written for a system as

D
(2) = "(2)�x2	

����@W@x
���� @W@x (4:1:3)

where the coe�cients 	 � 0 and can depend on the mesh index i, and each element of D(2)

depends on the corresponding element ofW. Now, suppose the ux di�erence is computed by
(Fi+1=2�Fi�1=2) in equation (4.1.1) using equation (4.1.3). Then, in the case of the continuum,

the total dissipation is given by

D
(2)
tot = "(2)�x3

@

@x

�
	

����@W@x
���� @W@x

�
(4:1:4)

This dissipation term can be characterized as third order. However, �x�1 appears in equa-
tion (4.1.1), so e�ectively, equation (4.1.4) de�nes a second-order term.

In 1975, MacCormack and Baldwin (ref. 31) appended a dissipation term for shock capturing
to the 1969 scheme of MacCormack (a two-step Lax-Wendro� type scheme (ref. 32)). This
dissipation term was introduced to remove oscillations at shock waves caused by the spatial

di�erencing of the MacCormack scheme. This dissipation term is proportional to a second
di�erence of the pressure and is given by

D
(2) = "(2)�x3

juj + c

4p

���� @
2p

@x2

���� @W@x (4:1:5)

In smooth regions of a ow �eld, the product of �x�1 and the dissipative ux balance D
(2)
tot is

third order, while the product of �x�1 and D
(2)
tot is �rst order in the neighborhood of a shock

wave.

As indicated, numerical dissipation is not only important in capturing discontinuities, it is

also generally required to maintain stability and provide necessary background dissipation for
convergence. In 1976, Beam and Warming (ref. 2) added to the explicit side of their implicit
approximate factorization (AF) scheme with what they called a fourth-order dissipation term

to damp high-frequency error components. With the Lax-Wendro� scheme, this fourth-order
dissipation term would appear as

D
(4)
tot = �"(4)�x4

@4W

@x4
(4:1:6)
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It seems more appropriate to de�ne the order of the dissipation relative to the spatial discretiza-

tion of the physical terms in the ow equations. So when considering �x�1D
(4)
tot, the dissipation

term is third order. At any rate, a fourth-di�erence dissipation is included, and along with the
second-di�erence term of equation (4.1.5), provides the basic ingredients for constructing a com-

plete, adaptive dissipation model. The second-di�erence term of equation (4.1.5) allows shock
capturing without oscillations, while the linear fourth-di�erence term of equation (4.1.6) pro-

vides the important background dissipation. The critical element missing is a switching function
that would turn on the appropriate dissipation form in a region and turn o� the dissipation form
that is not the desirable type (i.e. , near shocks D(2) of eq. (4.1.5) should dominate, with D(4)

of eq. (4.1.6) negligible, while in smooth regions, D(4) of eq. (4.1.6) should dominate, with D(2)

of eq. (4.1.5) negligible). In section 4.2, the dissipation model that adds a switching function to
the two basic types of dissipation terms just discussed is described.

4.2. Dissipation Model

To permit a complete description of the dissipation model, the two-dimensional Euler
equations are now considered. The dissipation is based on the model introduced by Jameson,

Schmidt, and Turkel (ref. 1) that de�ned a suitable switching function (at least for transonic
and low supersonic ow) to allow blending of the second and fourth di�erences. According to
the nonlinear model (ref. 1), the quantity LADWi;j in equation (3.2) is expressed as

LADW i;j = �(D2
� �D4

� + D2
� �D4

�)W i;j (4:2:1)

where (�;�) are arbitrary, curvilinear coordinates, and

D2
�Wi ;j = r�

h
(�i+1=2;j "

(2)
i+1=2;j

)��

i
Wi ;j (4:2:2)

D4
�Wi ;j = r�

h
(�i+1=2;j "

(4)
i+1=2;j

)�� r� ��

i
Wi ;j (4:2:3)

where i and j are indices (for a cell center) associated with the � and � directions, respectively,
and �� and r� are forward and backward di�erence operators in the � direction, respectively.

The de�nitions are similar in the � direction. The variable scaling factor � is de�ned as

�i+1=2;j =
1

2

h
(�� )i ;j + (�� )i+1;j

+ (��)i;j + (��)i+1;j

i
(4:2:4)

where �� and �� are the largest eigenvalues in absolute value (i.e., spectral radii) of the ux

Jacobian matrices associated with the Euler equations. These spectral radii are given by

�� = juy�� vx� j + c

q
y2� + x2�

�� = jvx� � uy� j + c

q
x2� + y2�

9>>>=
>>>;

(4:2:5)
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where u and v are Cartesian velocity components, and c is the speed of sound. The coe�cients
"(2) and "(4) use the pressure as a sensor for shocks and stagnation points, respectively, and are

de�ned as

"
(2)

i+1=2;j
= �(2) max(�i�1;j; �i;j;�i+1;j ;�i+2;j)

�i;j =

����
pi�1;j � 2pi;j + pi+1;j

pi�1;j + 2pi;j + pi+1;j

����

"
(4)

i+1=2;j
= max

h
0;(�(4)� "

(2)

i+1=2;j
)
i

9>>>>>>>=
>>>>>>>;

(4:2:6)

where typical values for the constants �(2) and �(4) are in the ranges 1=4 to 1=2 and 1=64 to 1=32,
respectively. This paper shall refer to equations (4.2.1) and (4.2.6) as the Jameson, Schmidt,
Turkel (JST) scheme (or dissipation model), and shall designate � as the JST switch. It should

be mentioned that in reference 1, the coe�cient "
(2)

i+1=2;j
= �(2)max(�i;j;�i+1;j ). The switching

function � can be interpreted as a limiter, in the sense that it activates the second-di�erence
contribution at extrema and switches o� the fourth-di�erence term. Moreover, at shock waves,

the dissipation is �rst order, and a �rst-order upwind scheme is produced for a scalar equation.
In smooth regions of the ow �eld the dissipation is third order.

Thus, two di�erent dissipation mechanisms are at work, and the switch determines which
one is active in any given region. For smooth ows, � is small, and the dissipation terms consist

of a linear fourth di�erence that damps the high frequencies the central di�erence scheme does
not damp. This dissipation is useful mainly for achieving a steady state and is less important

for time-dependent problems. In the neighborhood of large gradients in pressure, � becomes
large and switches on the second-di�erence viscosity while simultaneously reducing the fourth-
di�erence dissipation. This viscosity is needed mainly to introduce an entropy condition so that

the correct shock relationships are satis�ed and to prevent oscil lations near discontinuities. For
subsonic steady-state ow, this viscosity can be turned o� by choosing �(2) = 0.

The isotropic scaling factor of equation (4.2.4) is generally satisfactory for inviscid ow

problems when typical inviscid ow meshes (i.e., cel l aspect ratio O(1)) are used. The isotropic
scaling factor can create too much numerical dissipation in cases of meshes with high-aspect-
ratio cells. The adverse e�ect of high-aspect-ratio cells is an important consideration for high

Reynolds number viscous ows, where a mesh providing appropriate spatial resolution can have
cell aspect ratios O(103). In an e�ort to improve this cell aspect ratio situation and obtain

sharper shock resolution on a given grid, Swanson and Turkel (ref. 19) replaced the isotropic
scaling factor of equation (4.2.4) with the anisotropic scaling factor

�i+1=2;j =
1

2

h
(�� )i ;j

+ (�� )i+1;j

i
(4:2:7)

A similar scaling is used in the � direction.

The anisotropic scaling idea was motivated by the scaling of dissipation occurring in
dimensionally split, upwind schemes (i.e., the ux vector split scheme (ref. 12) and the
approximate Riemann solver (ref. 13)). Anisotropic scaling is often referred to as individual

eigenvalue scaling. While the accuracy is improved with equation (4.2.7), particularly with
respect to shock resolution, individual eigenvalue scaling in the streamwise (�) direction can

be too severe for a standard multigrid algorithm. Moreover, the e�ectiveness of the multigrid
driving scheme in damping high frequencies in the � direction can be signi�cantly diminished,
resulting in a much slower convergence rate.
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An alternative to the individual eigenvalue scaling was proposed by Martinell i (ref. 27), and
considered by Swanson and Turkel (ref. 19). This modi�ed scaling factor, which is a function of

mesh-cell-aspect ratio, is de�ned as

�i+1=2;j =
1

2
[(��� )i ;j + (��� )i+1;j ] (4:2:8)

where
(���)i;j = �i;j(r) (�� )i;j

�i;j(r) = 1 + r
�
i;j

9=
; (4:2:9)

Here, r is the ratio ��=�� , and the exponent � is generally taken to be between 1=2 and 2=3.

In the normal direction (�), (���)i ;j = �i;j(r
�1)(��)i ;j is de�ned. Thus, the scaling factor

of equation (4.2.8) is bounded from below by equation (4.2.7), and bounded from above by

equation (4.2.4). As demonstrated in references 19 and 20, the scaling factor of equation (4.2.8)
produces a signi�cant improvement in accuracy for high-aspect-ratio meshes, and permits good
convergence rates with a multigrid method. The scheme in this paper uses this modi�ed scaling

factor.

The impact of the dissipation form on the energy of a system of ow equations is now
examined. For simplicity, consider the 1-D, time-dependent Euler equations, with numerical

dissipation terms given by

J�1@W

@t
+

@F

@�
= D2

�W �D4
�W (4:2:10)

where

D2
�W =

@

@�

�
�"(2)

@W

@�

�

D4
�W =

@

@�

�
�"(4)

@3W

@�3

�

and �"(2) = �"(2), �"(4) = �"(4), and J�1 is the inverse transformation Jacobian. Form the
inner products of WT , with T denoting transpose, and both sides of equation (4.2.10), and

then integrate over a domain 
. After integration by parts and neglecting boundary terms, the
equation

1

2

@

@t
kWk2 = ux term + J

h
I(2)� I(4)

i
(4:2:11)

is obtained, where

kWk2 =

Z


W

2 d�

I(2) = �

Z



�"(2)
�
@W

@�

�2

d�

I (4) = �

Z



�"(4)
�
@2W

@�2

�2

d� +

Z



@�"(4)

@�

 
@WT

@�

!
�

�
@2W

@�2

�
d�

The second-di�erence dissipation term I (2) only decreases the L2 norm of the solution vector

(i.e., it decreases the energy of the system), and thus, is strictly dissipative. The fourth-di�erence

dissipation term I(4) contains a dispersive part and a dissipative contribution.
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An alternative form for the third-order dissipation term (the last term in eq. (4.2.10)) is

D4
�W =

@2

@�2

�
�"(4)

@2W

@�2

�

which can be written in the discrete case as

D4
�Wi =r� ��

h
(�i "

(4)
i )r� ��

i
Wi (4:2:12)

This modi�ed form produces only dissipative contributions. If Qi = �i"
(4)
i
r� ��Wi, then

r� ��Qi = �Q i+1=2��Qi�1=2, where � is the standard, centered-di�erence operator. Therefore,

the form of equation (4.2.12) is conservative, provided � and "(4) are evaluated at the cell centers

rather than at the cell faces. In reference 19, numerical tests were performed with the dissipation
terms of equations (4.2.3) and (4.2.12). For steady state, there seems to be no consistent bene�t

for either convergence or accuracy when using the form of equation (4.2.12). Based on these
results, the form of equation (4.2.3) is still used. However, for unsteady ows, equation (4.2.12)
may o�er an advantage because of the absence of dispersive e�ects that can cause phase errors.

Until now, a scalar viscosity inwhich the viscosity is based on di�erences of the same quantity

advanced in time has been considered. (See eq. (4.2.10).) The disadvantage is that the total
enthalpy is no longer constant in the steady state, even when total enthalpy should be identically
constant for the inviscid equations. The total enthalpy is constant for the steady-state Euler

equations because the energy equation is a constant multiple of the continuity equation when H

is constant. Hence, reference 1 suggests that the dissipation for the energy equation be based on

di�erences of the total enthalpy rather than the total energy. Thus, a typical situation in one
dimension is to replace equation (4.2.10) for the energy equation by

J�1
@�E

@t
+

@(�Hu)

@�
= D2

� (�H)�D4
� (�H) (4:2:13)

where �H = �E+ p. Reference 33 shows that equation (4.2.13) indeed yields a constant total

enthalpy, but that the entropy tends to be less accurate than if the dissipation term for the energy
equation is based on di�erences of �E rather than �H . Thus, both choices have advantages and

disadvantages. The total enthalpy formulation is used in this paper.

4.3. Boundary Treatment of Dissipative Terms

In a cell-centered, �nite-volume method, the �rst and last cells in each coordinate direction are
auxiliary cells where the ow equations are usually not solved. The solution in these cells is found

by a combination of the given physical boundary conditions and numerical boundary conditions.
Thus, there is no di�culty evaluating the second-di�erence dissipation term at the �rst or last
interior cell in a given coordinate direction. In the case of the fourth-di�erence dissipation term,

the treatment must be modi�ed at the boundaries of the physical domain because only one
layer of auxiliary cells is considered. Moreover, the standard �ve-point di�erence stencil must

be replaced at the �rst two interior mesh cells relative to a wall boundary; thus, one-sided or
one-sided biased stencils are used at these cells. The dissipative character of these stencils is
important because it inuences both stability and accuracy. For example, if the dissipation is

too large at a solid boundary, an arti�cial boundary layer is created in an inviscid ow, and the
e�ective Reynolds number for a viscous ow is altered.

4.3.1. Boundary-point operators. In this section, the two types of discrete boundary-point

operators (di�erence stencils) used with the present scheme for solid surfaces are de�ned.
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Figure 4. Boundary-point dissipation.

Next, these operators are evaluated by applying a local mode analysis. In addition, this

section shows how this local mode analysis can provide an evaluation of candidate boundary-
point operators once a basis for comparison is established. A more complete analysis for
the boundary-point operators is based on the dissipation matrix for the system of di�erence

equations approximating the governing ow equations. Sometimes the dissipation matrix can
be characterized analytically. In general, the eigenvalues of the dissipation matrix must be
determined. The approach for analyzing the dissipation stencils is discussed.

Consider the total dissipation resulting from a numerical ux balance for a mesh cell in a
particular coordinate direction. Let wj and dj denote a component of the solution vectorW

and the corresponding total dissipation, respectively. The index j indicates the mesh cell being
considered. Let dj+1=2 and dj�1=2 represent the dissipative uxes at the cell interfaces j + 1=2

and j�1=2, respectively (�g. 4). At a cell interface (for example, j+1=2), let (�w)j+1=2 denote

the di�erence between the solution for the adjacent cells (wj+1 �wj). For simplicity, assume

�"(4) = 1. Then, for any cell j

dj = dj+1=2 � dj�1=2 (4:3:1)

where the dissipative uxes are

dj+1=2 = (�w)j+3=2� 2(�w)j+1=2 + (�w)j�1=2

dj�1=2 = (�w)j+1=2 � 2(�w)j�1=2 + (�w)j�3=2

Thus

dj = (�w)j+3=2 � 3(�w)j+1=2 + 3(�w)j�1=2 � (�w)j�3=2 (4:3:2)

or
dj = wj+2 � 4wj+1 + 6wj � 4wj�1 + wj�2

Consider the �rst two interior cells adjacent to a solidboundary (�g. 4). The total dissipation for
these cells is denoted by d2 and d3. At j = 2, a value for (�w)1=2 must be determined because
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(�w)1=2 is unde�ned. Also, in this formulation of the boundary-point dissipation stencil, no
functional dependence on w1 is desired because w1 is outside the domain. Hence, a value for

(�w)3=2 must also be provided. If

(�w)1=2 = (�w)5=2

(�w)3=2 = (�w)5=2

)
(4:3:3)

then equation (4.3.2) gives

d2 = w4 � 2w3 + w2 (4:3:4)

d3 = w5 � 4w4 + 5w3 � 2w2 (4:3:5)

These boundary stencils are fairly standard and are used for inviscid ow calculations. An
alternative form, which reduces the sensitivity to solid-surface, normal mesh spacing for viscous

ow calculations without compromising stability or convergence, is obtained by replacing
(�w)1=2 with (�w)1=2 = 2(�w)3=2 � (�w)5=2 and leaving (�w)3=2 unchanged. This form

is given by

d2 = w4 � 3w3 + 3w2 � w1 (4:3:6)

d3 = w5 � 4w4 + 6w3 � 4w2 + w1 (4:3:7)

For turbulent ows, this boundary dissipation formulation (eq. (4.3.7)) is advantageous when
the mesh is �ne enough to adequately represent the laminar sublayer region of the boundary

layer (i.e., at least two points are inside the sublayer). For coarse meshes, this treatment of the
dissipation can be less accurate than the zeroth-order extrapolation of equations (4.3.3).

4.3.2. Local mode analysis. A local mode analysis is now considered to evaluate the

relative damping behavior of boundary-cell di�erence operators. For comparison purposes, the
interior fourth di�erence is �rst characterized. Taking a Fourier transform of equation (4.3.2)
yields zj(�) = 4(cos � � 1)2, where zj(�) is the Fourier symbol of the transformed dj , and �

is the product of the wave number and the mesh spacing. Then, zj(�) � �4 for small �, and
zj(�) = 16. The dissipation of long wavelengths is dictated by the behavior of zj(�) at small
�, and the dissipation of short wavelengths is governed by zj(�). As mentioned initially in this

section, this simple analysis assumes that �"(4) = 1. In practice, the coe�cient �(4) used in
the evaluation of "(4) for the fourth-di�erence dissipation a�ects the behavior of the boundary
dissipation stencil. The coe�cient �(4) is chosen such that the highest frequency is highly

damped according to a stability analysis using the interior-point stencil. This is important for a
multigrid method and will be discussed in section 7.3. Near a boundary, the dissipation should

behave in a similar manner. In this dissipation model, the same value of �(4) used for interior
points of the domain is also used near a boundary.

A general form of the di�erence stencils at j = 2; 3 can be written as

dj = �wj+2 � �wj+1 + (� +  � �)wj � wj�1

The associated Fourier symbol is given by

zj(�) = [� +  � 2�(1+ cos �)] (1� cos �)

+ i( � � + 2�cos �)sin �
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For small � this Fourier symbol is replaced by

zj (�) = (� +  � 4�)
�2

2
+ �

�4

2

+ i(2�� � + )�� i��3 (4:3:8)

and at � = � reduces to

zj(�) = 2(� + ) (4:3:9)

In the case of equation (4.3.4)

z2(�) �
�4

2
� i�3 (4:3:10)

for small �, with z2(�) = 4, and for equation (4.3.5)

z3(�) �
�2

2
� i�3 (4:3:11)

for small �, with z3(�) = 12. Note that z2(�) and z3(�) are not real. Thus, there are both
dissipation and dispersion near the boundary. For the stencil of equation (4.3.6)

z2(�) �
�4

2
� i�3 (4:3:12)

for small �, with z2(�) = 8, and for the stencil of equation (4.3.7)

z3(�) � �4 (4:3:13)

for small �, with z3(�) = 16. Comparing equations (4.3.10) and (4.3.12), which correspond
to the stencils of equations (4.3.4) and (4.3.6), respectively, shows that both stencils behave

the same for the long wavelengths, while equation (4.3.12) is twice as dissipative for the short
wavelengths. At j = 3, the stencil corresponding to equation (4.3.13) is fourth order on the
long wavelengths, whereas the stencil associated with equation (4.3.11) is only second order. In

addition, the symbol of equation (4.3.13) is more dissipative on the short wavelengths. Thus,
the improved accuracy and high-frequency damping observed for the stencils of equations (4.3.6)

and (4.3.7) in practice is substantiated with this simple analysis.

The method of combining the simple local mode analysis with the evaluations just considered

to quickly evaluate candidate dissipation stencils can now be shown. Consider a di�erent set
of boundary-point stencils. If �w is taken to represent either the component �u or �v of the
solution vector W, and the antisymmetry constraint (�w)1=2 = (�w)5=2 is imposed for viscous

ows, then equation (4.3.2) gives

d2 = w4 � 5w3 + 7w2 � 3w1 (4:3:14)

d3 = w5 � 4w4 + 6w3 � 4w2 + w1 (4:3:15)

The Fourier symbols of equation (4.3.14), using equations (4.3.8) and (4.3.9), are

z2(�) � 2�2 (4:3:16)

for small �, with z2(�) = 16, and the symbols for equation (4.3.15) are the same as given in
equation (4.3.13). Comparing equation (4.3.16) with equation (4.3.12) shows that the highest

frequency is damped better with the proposed stencil, but that the proposed stencil is only second
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order on the long wavelengths, while the stencil of equation (4.3.6) is fourth order, indicating
that better accuracy is obtained with equations (4.3.6) and (4.3.7). The improved accuracy has

been veri�ed with numerical experiments (i.e., skin-friction solutions for turbulent airfoil ows
have been computed on 160 by 32 meshes and compared with high-density-mesh results).

4.4. Matrix Analysis

The associated dissipation matrix is examined to determine the numerical dissipativity of a
discrete system of equations, such as equation (3.2). For simplicity, consider the 1-D system

dw

dt
= D(4)w (4:4:1)

where w is a discrete solution vector, and D(4) is a dissipation matrix corresponding to
fourth-di�erence terms. Taking the inner product wT (the transpose of w) with each side of

equation (4.4.1), obtain 1=2 dw2=dt = wTD(4)w . If the quadratic form wTD(4)w is nonpositive

de�nite, then the matrix D(4) is strictly dissipative. Moreover, the energy of the system is

nonincreasing. Assume there are boundaries at j = 3=2 and j = jl+ 1=2, and assume j = 2 and
j = jl are the indices for the �rst and last interior points, respectively. Apply the boundary point
stencils of equations (4.3.4) and (4.3.5) at the �rst two interior cell centers at both boundaries,

and the standard stencil everywhere else. The resulting dissipation matrix is given by

D(4) =

2
66666666666666666664

�1 2 �1

2 �5 4 �1

�1 4 �6 4 �1

0 �1 4 �6 4 �1

.. .
. . .

. . .
. . .

. . .

�1 4 �6 4 �1 0

�1 4 �6 4 �1

�1 4 �5 2

�1 2 �1

3
77777777777777777775

(4:4:2)

and the corresponding solution vector is given by

w = [ w2 w3 w4 w5 : : : wjl�2 wjl�1 wjl ]
T

Then

wTD(4)w = �

jl�1X
j=3

�
wj+1 � 2wj + wj�1

�2
� 0 (4:4:3)

Thus, D(4) is strictly dissipative. This same result is obtained by Eriksson and Rizzi (ref. 34).

For a 10 by 10 matrix with the form of equation (4.4.2), Pulliam (ref. 35) obtains two zero

eigenvalues. Ideally, D(4) should have no zero eigenvalues, since zero eigenvalues can possibly
produce undamped modes that cause instabilities (ref. 35).

Pulliam (ref. 35) recommends applying a stencil with the weights of equation (4.3.5) at the
�rst interior cell, and a standard stencil with the weights of equation (4.3.7) at the second interior

cell . Then
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D(4) =

2
66666666666666666664

�5 4 �1

4 �6 4 �1

�1 4 �6 4 �1

0 �1 4 �6 4 �1

.. .
. . .

. . .
. . .

. . .

�1 4 �6 4 �1 0

�1 4 �6 4 �1

�1 4 �6 4

�1 4 �5

3
77777777777777777775

(4:4:4)

and

w
TD(4)

w = �

jl�1X
j=3

�
wj+1 � 2wj +wj�1

�2

� (w3 � 2w2)
2
� (wjl�1 � 2wjl)

2
� 0 (4:4:5)

Again, the dissipation matrix is strictly dissipative. Moreover, a 10 by 10 matrix with the
structure of equation (4.4.4) has zero eigenvalues (ref. 35). However, indications are that

for a cell-centered, �nite-volume formulation, this boundary-point treatment of the dissipation
with the weights of equations (4.3.5) and (4.3.7), although appropriate at inow and outow

boundaries, is generally too dissipative at solid boundaries. Thus the stencils of equations (4.3.4)
and (4.3.5) are preferred at a wall boundary.

Now consider the stencils with the weights of equations (4.3.6) and (4.3.7). The dissipation

matrix is given by

D(4) =

2
66666666666666666664

�3 3 �1

4 �6 4 �1

�1 4 �6 4 �1

0 �1 4 �6 4 �1

.. .
. . .

. . .
. . .

. . .

�1 4 �6 4 �1 0

�1 4 �6 4 �1

�1 4 �6 4

�1 3 �3

3
77777777777777777775

(4:4:6)

and

w
TD(4)

w = �

jl�1X
j=3

�
wj+1 � 2wj +wj�1

�2
+w2(w3 � w2)� (w3 � w2)

2

� (wjl�1 � wjl)
2 + wjl(wjl� wjl�1) � 0 (4:4:7)
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From the quadratic form of equation (4.4.7), it does not directly follow that D(4) is nonpositive
de�nite, which is generally the case with the quadratic form. If the eigenvalues of a 10 by

10 matrix with the structure of equation (4.4.6) are determined, one is zero and the others

are negative. Therefore, the matrix D(4) is nonpositive de�nite. Although there is one zero
eigenvalue, the present scheme performs well using the boundary-point operators associated
with equations (4.3.6) and (4.3.7) at solid boundaries when solving viscous ow problems.

4.5. The Upwind Connection

Upwind schemes for solving hyperbolic systems of conservation laws (i.e., Euler equations of

gas dynamics) generally rely upon characteristic theory to determine the direction ofpropagation
of information and, thus, the direction required for one-sided di�erencing approximations of the
spatial derivatives. With upwind schemes, shock waves can be captured without oscillations.

Thus, a successful arti�cial dissipation model for a central di�erence scheme should imitate an
upwind scheme in the neighborhood of shocks. The connection between upwind and central
di�erence schemes is now reviewed.

Consider the 1-D scalar wave equation

@u

@t
+ a

@u

@x
= 0

with a constant. The �rst-order upwind scheme can be written as

un+1
j = uj � a

�t

�x

8<
:
uj+1 � uj (a < 0)

uj � uj�1 (a > 0)
(4:5:1)

where all discrete quantities are evaluated at time level n�t unless otherwise denoted. The

scheme of equation (4.5.1) can be rewritten as

un+1
j

= uj � a
�t

2�x
(uj+1 � uj�1)+ jaj

�t

2�x
(uj+1 � 2uj + uj�1) (4:5:2)

Equation (4.5.2) now contains a central di�erence term and a second-di�erence dissipation term.

Now consider the system
@u

@t
+ A

@u

@x
= 0 (4:5:3)

where u is an N-component vector. The system case can be converted to a scalar system by
diagonalizing the N by N matrix A with a similarity transformation � = T�1AT , where the

columns of T are the right eigenvectors of A. After diagonalizing equation (4.5.3), and applying
the scheme of equation (4.5.2), the �rst-order upwind scheme is given by

un+1j = uj � a
�t

2�x
(uj+1 � uj�1) + jAj

�t

2�x
(uj+1 � 2uj + uj�1) (4:5:4)

where
jAj = T j�jT �1

� = Diag [j�1j � � � j�N j]

)
(4:5:5)
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Note that since A has only three distinct eigenvalues, by using the Cayley-Hamilton theorem, jAj
can be expressed as a quadratic polynomial in A. The generalization to a system of conservation

laws is as follows:
@u

@t
+

@f

@x
= 0

with f being an N-component ux vector, and

un+1
j

= uj �
�t

2�x
(fj+1 � fj�1)+

�t

2�x

h���Aj+1=2

��� (uj+1 � uj)�
���Aj�1=2

��� (uj � uj�1)
i
(4:5:6)

where the Jacobian matrix A = @ f=@u, and jAj is de�ned the same as for equation (4.5.4). The

matrix
���Aj+1=2

��� can be computed as either an arithmetic average or a Roe average (ref. 13).

For transonic, steady ows the di�erences are negligible and the simpler arithmetic average is

used. Yee (ref. 36) found that the Roe average yields better results for hypersonic ows. The
Roe average also seems to give slightly better results for time-dependent problems.

4.6. Matrix Dissipation Model

As indicated in section 4.5, high resolution of shock waveswithout oscillations can be achieved
by closely imitating an upwind scheme in the neighborhood of a shock wave. A key feature of

upwind schemes is a matrix evaluation of the numerical dissipation. With this matrix evaluation,
the dissipative terms of each discrete equation (associated with a given coordinate direction) are

scaled by the appropriate eigenvalues of the ux Jacobian matrix rather than by the spectral
radius, as in the JST scheme. Such a matrix dissipation also allows high resolution of wall
bounded shear layers (ref. 37). The modi�cations of the JST dissipation model required to

produce the matrix dissipation model currently used are now presented.

Consider the two-dimensional, time-dependent Euler equations in the form

@(J�1W)

@t
+

@F

@�
+

@G

@�
= 0 (4:6:1)

where F and G are ux vectors, W is the solution vector, and (�; �) are arbitrary curvilinear
coordinates. De�ne A and B as the ux Jacobian matrices @F=@W and @G=@W , respectively.

By extending the scheme given in equation (4.5.6) to two dimensions, it follows that the matrices
jAj and jBj must be the scaling factors in a matrix dissipation model. Now, consider the JST

dissipation model. The necessary modi�cation to the contributions for the � direction of the
arti�cial dissipation term de�ned by equation (4.2.1) is to substitute matrix jAj for the eigenvalue
scaling factor � in equations (4.2.2) and (4.2.3). For the � direction, � and matrix jA j are

replaced by � and matrix jB j, respectively. Next, de�ne explicitly the form for the matrix jAj.
Let � = Diag [�1 �2 �3 �3] with

�1 = q +

q
a21 + a22 c

�2 = q �

q
a21 + a22 c

�3 = q

a1 = J�1�x

a2 = J�1�y

q = a1u + a2v
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Then,

jAj = j�3 jI +

�
j�1j + j�2j

2
� j�3 j

� 
 � 1

c2
E1 +

1

a21 + a22
E2

!

+
j�1 j � j�2 j

2

0
@ 1q

a21 + a22 c

1
A [E3 + ( � 1)E4] (4:6:2)

where

E1 =

2
66664

� �u �v 1

u� �u2 �uv u

v� �uv �v2 v

H� �uH �vH H

3
77775

E2 =

2
66664

0 0 0 0

�a1q a21 a1a2 0

�a2q a1a2 a22 0

�q2 qa1 qa2 0

3
77775

E3 =

2
66664

�q a1 a2 0

�uq ua1 ua2 0

�vq va1 va2 0

�Hq Ha1 Ha2 0

3
77775

E4 =

2
66664

0 0 0 0

a1� �a1u �a1v a1

a2� �a2u �a2v a2

q� �qu �qv q

3
77775

Here, H is the total enthalpy, and � = (u2 + v2)=2. Note that for the matrices Ej , each row

is a scalar multiple of the other rows (except for zero rows). Hence, to �nd the product EjW,

simply �nd one element of the product EjW, and the other rows are then scalar multiples of

that element. Because of the special form of matrix jAj for any �1, �2, and �3, an arbitrary

vector x can be multiplied by matrix jAj very quickly. That is, calculate

���Aj+1=2

��� (Wj+1�Wj)

directly rather than calculate

���Aj+1=2

��� and multiply a matrix by a vector. The matrix jBj is

computed the same way as matrix jAj by simply replacing � with �.
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In practice, �1 ; �2, and �3 cannot be chosen as given above. Near stagnation points, �3
approaches zero, while �1 or �2 approach zero near sonic lines. A zero arti�cial viscosity creates

numerical di�culties. Hence, these values are limited as

j~�1j = max[ j�1 j; Vn�(A)]

�(A) = jq j + c

q
a21 + a22

j~�2j = max[ j�2 j; Vn�(A)]

j~�3j = max[ j�3 j; V`�(A)]

9>>>>>>>>=
>>>>>>>>;

where the linear eigenvalue �3 can be limited di�erently than the nonlinear eigenvalues. The

parameters Vn andV` were determined numerically. Various values were evaluated by comparing
their corresponding computed solutions based on the sharpness of shock waves captured (without
producing oscillations) and convergence rate of numerical scheme. Based on this evaluation, a

good choice for Vn and V` is 0.2. However, in reference 37, accurate coarse-grid solutions for a
low-speed, high Reynolds number (5� 105) laminar ow over a at plate were not obtained with

V` = 0:2. Accurate coarse-grid results (i.e., 5 to 10 points in boundary layer) were computedwith
V` = 0:01 for the direction normal to the plate, and V` = 0 :2 for the streamwise-l ike direction.

Thus far, �i+1=2;j in equations (4.2.2) and (4.2.3) has been replaced by a matrix while leaving

the limiters �(2) and �(4) as scalars. Also, �(2) and �(4) can be introduced into the diagonal matrix
�, allowing di�erent limiters to be chosen for di�erent characteristic variables. For example,

the limiter may be based on pressure for the nonlinear waves. However, the pressure is smooth
through a contact discontinuity. Hence, a switch based on temperature may be more appropriate
for the linear wave. Di�erent mesh scalings, and thus di�erent �(r) for the linear and nonlinear

waves, could also be used.

5. Discrete Boundary Conditions

An important element when developing an accurate and e�cient algorithm for solving the

Euler and Navier-Stokes equations is selection of proper boundary conditions. The choice of
conditions must be consistent with physical constraints of the problem of interest and the interior

discrete formulation. Moreover, the physical conditions generally must be supplemented with a
su�cient number of numerical relations to allow determination of all dependent variables.

In addition to de�ning the conditions at solid or porous wall boundaries, the in�nite domain
problem must be adequately simulated for external airows. External airow simulation is usu-

ally done by delineating boundaries at some distance from the primary region of consideration,
and then prescribing suitable boundary conditions for that location. In the case of a lifting

airfoil , the outer boundary position must be far enough away from the airfoil not to compromise
the development of the lift. For example, 5 airfoil chords would be too close, whereas 20 chords
would be satisfactory if the far-�eld vortex e�ect (ref. 38) is considered. Even for inviscid, non-

lifting airow over a circular cylinder, an outer boundary placed too close to the cylinder can
cause inaccurate prediction of the airow over the aft portion of the cylinder.

At a solid boundary, a row of auxiliary cells is created exterior to the domain of the airow.

By approximating the normal pressure gradient of equation (2.2.4) with a three-point centered
di�erence at the surface, the auxil iary cell pressure is obtained. The density at this cell is
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equated to the density at the �rst point o� the surface. The tangency condition is enforced by

determining the Cartesian velocity components from

�
u

v

�
i;1

=

�
�x� ��y�
�y� �x�

�
w

�
qt
qn

�
i ;2

where � is the coordinate aligned with the surface boundary, qt and qn are the tangential and

normal velocity components, respectively, the subscript w means wall, and the indices (i; 1) and

(i;2) refer to the centers of the auxiliary and the �rst interior cells, respectively. The overbar

means the quantity is divided by

q
(x2� + y2� ). Finally, the total internal energy is computed

using the relation

�E =
1

 � 1
p +

1

2
�(u2 + v2)

In the case of viscous ows, the no-slip condition is required, and is imposed by treating the

Cartesian velocity components as antisymmetric functions with respect to the solid surface.

Thus
ui;1 = �ui;2

vi;1 = �vi;2

The surface values of pressure (p) and temperature (T ) are computed using the reduced normal

momentum and energy equations
@p

@�
= 0

@T

@�
= 0

9>>>=
>>>;

(5:1)

where � is the coordinate normal to the surface. As part of the boundary conditions, the option

to specify the wall temperature instead of imposing the adiabatic condition of equations (5.1) is

included.

To compute the unknown ow variables at the outer boundary of an external aerodynamics

problem, characteristic theory, some simplifying assumptions, and the concept of a point vortex

are used. In appendix A, a point on the outer boundary and the two-dimensional Euler equations

are considered. Then, assuming a locally homentropic ow, the one-dimensional equations of

gas dynamics are derived (for completeness) for the direction normal to the boundary. The

elements of the solution vector are proportional to the local tangential velocity component and

the Riemann invariants

R+ = qn +
2c

 � 1

and

R� = qn �
2c

 � 1

respectively, where the tangential and normal velocity components are de�ned as

qt =
x� u+ y� vq
(x2� + y2� )

and

qn =
�y�u+ x� vq
(x2� + y2� )
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respectively. This set of dependent variables, the homentropic assumption, and characteristic
theory are used to determine the unknown ow variables.

To compute the discrete solution at the outer boundary points (as for the wall boundary), a

row of auxil iary (boundary) cells exterior to the domain is introduced. Then, at a boundary cell,
the normal velocity component qn and the speed of sound c are computed from the relations

qn =
1

2

�
R+ +R�

�

c =
 � 1

4

�
R+

�R�
�

where the characteristic variables R+ and R� are appropriately determined. Assume that

the ow normal to the boundary is subcritical. If inow occurs, the characteristic variables
corresponding to the ingoing characteristics are speci�ed. Since this is actually a two-dimensional

system, an additional quantity must be given. It follows directly that the entropy s should be
speci�ed (the ow is assumed to be locally homentropic). In practice, for convenience de�ne
s� = p=� , which has the same functional dependence as entropy, and use this variable in place

of entropy. So, for an inow situation, set

qt = qt1

R+ = R+
1

s� = s�
1

9>>=
>>;

(5:2)

and extrapolate R� from the interior. If outow occurs at the boundary, there is only one
ingoing characteristic (corresponding to R+), and thus, set R+ = R+

1
and extrapolate qt, R

�,
and s� from the interior. In the particular case of supersonic ow, all characteristics are ingoing

if there is inow, and are outgoing if there is outow. Therefore, the dependent variables are
speci�ed with their free-stream values if inow occurs, and extrapolation is used to determine

the boundary ow variables if outow occurs.

At a distance far enough away from a 2-D lifting body, the lifting body can be viewed
as a point vortex, with strength proportional to the circulation associated with the lift. The
components of the induced velocity at the far-�eld boundary caused by the vortex can then be

computed. Moreover, the e�ective velocity components at the far-�eld boundary are computed
as (ref. 38)

u = u
1

cos�+ F sin �

v = v1 sin� � F cos�

�
(5:3)

where

F =
cl c

4�

��

R

h
1�M2

1
sin2 (�� �)

i
�1

�� =

q
1�M2

1
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Figure 5. Physical domain for airfoil calculations.

Here, the subscript 1 refers to free-stream values, � is the angle of attack, R and � are the

magnitude and angle of the position vector originating from a reference point at the body (i.e.,

quarter-chord point for airfoil) and extending to the far-�eld boundary point, respectively, c

is the body length, and cl is the lift coe�cient. The polar angle � is de�ned as positive in

the counterclockwise direction relative to a reference line (i.e., coinciding with chord for airfoil)

emanating from the leading edge of the body andproceeding downstream. The Cartesianvelocity

components u and v of equations (5.3) are used to compute the local tangential and normal

velocity components, respectively, required in the boundary conditions.

Consider the case of a C-type mesh wrapped around an airfoil, and denote the outer boundary

of a �nite domain as �1 + �2 (�g. 5). For airfoil computations, the boundary cells at �1 are

treated as described in this section. The boundary cells at �2 are also treated in this way when

the ow is inviscid. In the viscous ow problem, a portion of the boundary �2 can generally be

wake ow. If the boundary conditions applied at �2 for inviscid ows are used for viscous ows,

instabilities can occur. One way to treat the boundary cells at �2 is to specify the pressure and

extrapolate the variables �, �u, and �v, which would satisfy the requirement of characteristic

theory to specify one quantity. However, this approach results inpressure-wave reections, which

can seriously delay the convergence of the numerical scheme.

An alternative boundary-point treatment is to extrapolate all dependent variables, allowing

the outer and surface boundaries to determine a unique solution. Numerical experiments

demonstrate that solutions obtained applying these two treatments are essentially the same

near the airfoil. Furthermore, if the outer boundary is far enough away (i.e., 20 chords), there

is generally no e�ect on global quantities such as lift and drag. The second approach shows

noticeable improvement in the convergence behavior of the solution algorithm.

For internal ows where the inlet Mach number is subsonic, the speci�ed ow quantities of

equations (5.2) are replaced with the total pressure, total enthalpy, and ow inclination angle.

These conditions are usually known for internal ow problems. The Riemann variable R�

is extrapolated from the interior of the domain. At a subcritical exit boundary the pressure

is speci�ed, while the Riemann variable R+, the total enthalpy, and the velocity component

parallel to the boundary are extrapolated from the interior. If supersonic ow occurs at the
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inlet or exit boundary, the variables at that particular boundary are determined in the same
manner described in this section for supersonic external ow problems.

6. Basic Time-Stepping Schemes

In section 6.1, the class of Runge-Kutta (R-K) schemes used for time integration is de�ned.

The parameters associated with these R-K schemes and the requirements for determining the
parameters are discussed. Then, stabil ity analysis for the four-stage and �ve-stage schemes
that are applied is conducted by considering a linear-wave equation. In section 6.2, stabil ity

properties of R-K schemes for systems of uid dynamic equations are presented. This requires
writing the Navier-Stokes equations in general curvilinear coordinates and de�ning associated

Jacobian matrices. With this framework in place, an estimate for the time step is given in
section 6.3.

6.1. Runge-Kutta Schemes

For problems where the area of a mesh cell is independent of time, the semidiscrete system
of equation (3.2) becomes

d

dt
Wi;j +R(Wi;j) = 0 (6:1:1)

where R(W i;j) is the residual function de�ned by

R(W i;j) =
1


i;j

(LC + LD + LAD)Wi ;j (6:1:2)

A variety of methods for the integration of ordinary di�erential equations (ODE's) can be
used to advance the solution of equation (6.1.1) in time. Single-step, multistage schemes
(such as R-K schemes) are usually preferred, rather than linear multistep schemes (such as

the Adams-Bashforth scheme), because multistep schemes require more storage and introduce
implementation di�culties when combined with a multigrid method. A four-stage R-K scheme

(ref. 1) that belongs to the class of standard R-K schemes and is fourth-order accurate in time
is used to solve a system of ODE's corresponding to the Euler equations. The four-stage R-K
scheme can be written as

W(0) = W(n)

W(1) = W(0)
�

�t

2
R(0)

W(2) = W(0)
�

�t

2
R(1)

W(3) = W(0)
��tR(2)

W(4) = W(0)
�

�t

6

�
R(0) + 2R(1) + 2R(2) + R(3)

�

W(n+1) = W(4)

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(6:1:3)

where R(q) = R(W(q)), the superscript n denotes the time level n�t , and the mesh indices

(i;j) associated with the solution vector W are suppressed for convenience. If interest is only in
steady-ow problems, then the higher order accuracy in time is not important, and other classes

of multistage schemes can be considered. Schemes can be constructed with certain desirable
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stability and damping characteristics that lead to e�cient steady-state solvers. For example,
the solution at the (q + 1)th stage (ref. 3) can be expressed as

W
(q+1) =W(0)

� �q+1 �tR(q) (6:1:4)

where the residual function

R
(q) =

1




 
qX

r=0

�qr LCW
(r) +

qX
r=0

�qr LDW
(r) +

qX
r=0

qr LADW
(r)

!
(6:1:5)

and the consistency conditions
P

�qr = 1,
P

�qr = 1, and
P

qr = 1 must be satis�ed. The
basic parameters �p (where p = q + 1 (q = 0; : : : ; m � 1)) and the weighting factors �qr ,

�qr , and qr must be prescribed to de�ne the m-stage, time-stepping scheme. The desired
stability and damping properties of the scheme provide the requirements for determining the
basic parameters and weighting factors. Both hyperbolic and parabolic stability limits must be

considered. The hyperbolic and parabolic limits are intervals along the imaginary and negative
real axes, respectively, in the complex plane. The coe�cients �p can be chosen to have the

best possible hyperbolic or parabolic stability limit without special regard to the high-frequency
damping characteristics of the scheme. However, if the scheme is used as a driver of a multigrid
method, the scheme must e�ectively damp the highest frequency error components.

Van der Houwen (ref. 39) gives the parameters �p that correspond to the maximum (or nearly
so) attainable Courant-Friedrichs-Lewy (CFL) number. For schemes with an odd number of
stages, Van der Houwen proved that the largest possible stability interval along the imaginary

axis of the complex domain is (m� 1). Vichnevetsky (ref. 40) conjectured that (m � 1) is also
the optimal CFL number when m is even, and demonstrated this concept for m = 2 and 4.

Sonneveld and Van Leer (ref. 41) proved that the (m � 1) CFL number limit is valid when m

is even. Jameson (refs. 3 and 42) considers schemes with the �p 's of Van der Houwen, and
de�nes appropriate weighting factors for the arti�cial dissipation evaluations to yield a good

parabolic l imit. Although the �p 's are obtained using only a hyperbolic stability limitation,
they are still a good choice for a viscous ow solver, especially at high Reynolds numbers. That

is, the convection (hyperbolic) limit on the time step remains the controll ing stabil ity factor for
practical aerodynamic ows.

Several members of the class of schemes de�ned by equations (6.1.4) and (6.1.5) have been

analyzed in reference 42 by considering the model problem

@w

@ t
+ a

@w

@x
+ �4 �x3

@4w

@x4
= 0 (6:1:6)

Equation (6.1.6) is the 1-D, linear-wave equation with a constant-coe�cient, third-order dissi-
pation term. If the spatial derivatives in equation (6.1.6) are approximated with central di�er-

encing, then

�t
dw

dt
= �

N

2
(w

n
j+1 � w

n
j�1) � �4

N

a
(w

n
j+2 � 4w

n
j+1 + 6w

n
j � 4w

n
j�1 + w

n
j�2) (6:1:7)

where N = a�t=�x is the Courant number. Taking the Fourier transform of equation (6.1.7),
obtain

�t
dŵ

dt
= z ŵn (6:1:8)

where the Fourier symbol

z = �iN sin �� 4�4
N

a
(1� cos �)

2
(6:1:9)
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Here, i =
p�1, and � is the Fourier angle. If the residual function for any stage q is given by

R(q) = (LC + LAD)w(q) (6:1:10)

then the ampli�cation factor for anm-stage scheme is

g(z) = 1 + f̂(�)z(�) (6:1:11)

where
f̂ (�) = �1 + �2z

2 + � � � + �mz
m (6:1:12)

Here, �1 = �m with �m = 1 for consistency, and �l = �l�1�m�l+1 with l = 2; 3; : : : ; m. Since

g(z) is analytic, the maximum modulus theorem guarantees that all contours jg(z)j < 1 lie inside
the absolute stability curve jg(z)j = 1. For this subclass of schemes, which are schemes satisfying
the requirement that jzj � (m � 1) (refs. 3 and 41), the optimal polynomials are de�ned as

g(z) = Pk(z) = ik�1Tk�1
� � iz

k � 1

�
+
ik

2

�
Tk

� �iz
k � 1

�
� Tk�2

� � iz

k � 1

��
(6:1:13)

where Tk is a Chebyshev polynomial, and k � 2. The coe�cients �l for the four-stage and
�ve-stage schemes given in reference 39 are

�1 = 1

�2 =
1

2

�3 =
1

6

�4 =
1

24

and
�1 = 1

�2 =
1

2

�3 =
3

16

�4 =
1

32

�5 =
1

128

respectively.

In the more general situation, the ampli�cation factor is not a polynomial in z. For example,
consider the subclass of schemes de�ned by equation (6.1.5) that are called (m; n) schemes. The

m refers to the number of stages, and n designates the number of evaluations of the dissipative
contribution. For example, assume a (m; 2) scheme, where the numerical dissipation terms are
evaluated on the �rst and second stages and frozen for the remaining stages (similar to the (4; 2)

scheme used). Let zr = <(z) and zi = i=(z). Then, if m � 3, the f̂ of equation (6.1.12) is

replaced by
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f̂ = �1 � (�1�1zr + �2zi)z
0
i + (�2�1zr + �3zi)z

1
i � � � �

+ (�1)m(�m�2�1zr + �m�1zi)z
m�3
i � (�1)m�mzzm�2

i (6:1:14)

Consider the (5,3) scheme generally used, where the dissipation terms are evaluated on the

�rst, third, and �fth stages, and frozen on the second and fourth stages. For this scheme, the
weighting factors for the dissipation terms (qr in eq. (6.1.5)) are as follows:


00

= 1


10

= 1


11

= 0


20

= �
3


21

= 0


22

= 
3


30

= �
3


31

= 0


32

= 
3


33

= 0


40

= �
3
�
5


41

= 0


42

= 
3
�
5


43

= 0


44

= 
5

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(6:1:15)

where �3 = (1 � 
3
), �

5
= (1 � 

5
), 

3
= 0:56, and 

5
= 0:44. The symbol of the time-stepping

operator f̂ for this scheme is given by

f̂ = �5

h
1� �4z1(1� �3zi) � �4z3z1(�3z2zi � 

3
zr)� �

5

3
z3zr

i
(6:1:16)

where
z1 = zi + 

5
zr

z2 = zi + 
3
zr

z3 = �2(1 � �1zi)
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In a number of ow computations, four-stage and �ve-stage schemes are applied (refs. 19, 24,
43, and 44). For these schemes, the residual function is

R
(q) =

1




 
LCW(q) + LDW(0) +

qX
r=0

qr LADW(r)

!
(6:1:17)

By evaluating the physical di�usion terms on the �rst stage only, the computational e�ort of
the scheme is reduced. This incompatibility with the computation of the numerical dissipation

terms does not cause any deterioration in the performance of the schemes. The evaluation of the
numerical dissipation terms on certain stages (and the weighting of these evaluations) provides
two advantages. First, the parabolic stabil ity limit can be extended, and the high-frequency

damping can be improved. Second, the expense of calculating the dissipation terms can be
reduced. Reference 3 provides additional discussion on the weighting of dissipation.

The time-stepping parameters for the four-stage scheme are

�1 =
1

4

�2 =
1

3

�3 =
1

2

�4 = 1

9>>>>>>>>>>=
>>>>>>>>>>;

(6:1:18)

Since �m�1 = 1=2, the scheme is second-order accurate in time. The numerical dissipation terms

are evaluated the same as for equation (6.1.14). For the model problem of equation (6.1.6), the
absolute stability curve for this scheme is presented in �gure 6(a). The hyperbolic stabil ity

limit (as determined by the extent of the stability interval on the imaginary axis) is 2
p
2. The

parabolic stabil ity limit (as determined by the extent of the stability interval on the negative
real axis) is 4. The dashed line (�g. 6(a)) represents the locus of the Fourier symbol as de�ned

in equation (6.1.9), and must lie inside the jgj = 1 curve for stabil ity. Figure 6(b) shows the
variation of the ampli�cation factor g with the Fourier angle �. The scheme exhibits good
high-frequency damping, which is crucial for a rapidly convergent multigrid method. When

analyzing the stabil ity and damping properties, it is important to include all components of the
scheme. For example, if the stability limit of the algorithm is extended through the introduction

of an implicit residual smoothing procedure (discussed in section 7.2), some deterioration in the
high-frequency damping occurs (�gs. 6(c) and 6(d)).

In the case of the �ve-stage scheme, the basic parameters are

�1 =
1

4

�2 =
1

6

�3 =
3

8

�4 =
1

2

�5 = 1

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(6:1:19)
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(a) Stability curves with two evaluations of dissipation;

CFL = 2.4; �(2) = 0; �(4) = 1=32.

(b) Amplication factor with two evaluations of dissipa-

tion; CFL = 2.4; �(2) = 0; �(4) = 1=32.
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(c) Stability curves with implicit residual smoothing;

CFL = 4.8; � = 0:6; �(2) = 0; �(4) = 1=32.

(d) Ampli�cation factor with implicit residual smooth-

ing; CFL = 4.8; � = 0:6.

Figure 6. Plots of four-stage R-K scheme; �(2) = 0; �(4) = 1=32; coe�cients are 1/4, 1/3, 1/2, and 1.
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A very large parabolic stabil ity limit is established by evaluating the arti�cial dissipation terms
on the �rst, third, and �fth stages with the weightings of equations (6.1.15). Figure 7(a) shows

that for this scheme, the hyperbolic stabil ity limit is 4 and the parabolic stability limit is about 9.
Figure 7(b) shows that this �ve-stage scheme also has goodhigh-frequency damping. Figures 7(c)

and 7(d) show the stability curves for this scheme when implicit residual smoothing is applied.
In practice, with the implicit residual smoothing, a CFL number of 7.5 is used for this scheme.
For the four-stage scheme, a CFL number of 5.0 is used. So, with one additional evaluation of

the implicitly smoothed residual function, the CFL number increases by a factor of 1.5.
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(a) Stability curves with three evaluations of dissipa-

tion; CFL = 3.0.

(b) Ampli�cation factor with three evaluations of dissi-

pation; CFL = 3.0.
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(c) Stability curves with implicit residual smoothing;

CFL = 6.0; � = 0:6.

(d) Ampli�cation factor with implic it residual smooth-

ing; CFL = 6.0; � = 0:6.

Figure 7. Plots of �ve-stage R-K scheme; �(2) = 0; �(4) = 1=32; coe�cients are 1/4, 1/6, 3/8, 1/2, and 1.
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6.2. Stability of Runge-Kutta Schemes for Systems

The compressible Navier-Stokes equations can be classi�ed as either hyperbolic-parabolic or
incomplete-parabolic type (refs. 45{47). As discussed in section 6.1, these equations are solved

numerically with a member of a class of multistage time-stepping schemes. By considering the
hyperbolic (inviscid) and parabolic (viscous and numerical dissipation) operators separately,

su�cient conditions for stabil ity can be obtained. These conditions can be used as a starting
point for estimating a time step for solving the full Navier-Stokes equations.

To estimate the restriction on the time step due to convection and di�usion, we consider
the two-dimensional, Navier-Stokes equations expressed in generalized coordinates (�; �). These

equations can be written as

@fW
@t

+
@eF(�)
@�

+
@eF(�)

@�
=

@ eF(�)
v

@ �
+

@eF(�)
v

@�
(6:2:1)

where fW = J�1W , with J�1 and W representing the inverse of the transformation Jacobian

and the vector of conserved ow variables, respectively. The derivatives associated with
the transformation from Cartesian coordinates (x; y) to (�; �) and the corresponding inverse
transformation are related as �

�x �x
�y �y

�
=

1

J�1

�
y� �y�
�x� x�

�

and the inverse of the transformation Jacobian is given by

J�1 =
@ (x; y)

@(�; �)
= x�y� � x�y� = 


The transformed inviscid ux vectors ~F(�) and ~F(�) are given by

eF(�) = J�1(�xF
(�)

� �yF
(�)) (6:2:2)

eF(�) = J�1(�xF
(�)

� �yF
(�)) (6:2:3)

Using the notation of reference 48, the viscous ux vectors eF(�)
v and eF(�)v can be expressed as

eF(�)v = eB(�;�)@
fW
@�

+ eB(� ;�)@
fW
@�

(6:2:4)

eF(�)
v = eB(�;�)@

fW
@�

+ eB(�;�)@
fW
@�

(6:2:5)

where eB(�;�) = B
(�;�)
1 M; �; � 2 f�; �g (6:2:6)

38



and B
(�;�)
1 is a viscous matrix obtained by rewriting the eFv vectors in terms of primitive

variables. The matrixM , which transforms nonconservative (primitive) variables to conservative
variables, and the inverse of matrix M are given by

M =

266664
1 0 0 0

�u��1 ��1 0 0

�v��1 0 ��1 0

�2 �( � 1)u �(� 1)v ( � 1)

377775 (6:2:7)

and

M�1 =

266664
1 0 0 0

u � 0 0

v 0 � 0

( � 1)�1�2 �u �v ( � 1)�1

377775 (6:2:8)

respectively, with �2 = ( �1)(u2+v2)=2. The viscous matrices eB(�;�), eB(�;�), eB(�;�), and eB(�;�)

are de�ned according to

eB(�;�) =

2666664
0 0 0 0

0 B�;�x;x B�;�x;y 0

0 B�;�y;x B�;�y;y 0

�B�;�p��2 B�;�
x;xu+ B�;�

y;x v B�;�y;y v + B�;�
x;y u B�;���1

3777775 (6:2:9)

with

B�;�
a;b =

p
M

Re

�
�
@�

@a

@�

@b
+ �

@�

@b

@�

@a
+ �r� � r� �a;b

�
(6:2:10)

B�;� =

p
M

Re

�


 � 1

�
�

P r
r� � r� (6:2:11)

where the nondimensionalization of section 3.1 is employed, r is the gradient operator, and

�a;b is the Kronecker delta. Using the Jacobian matrices eA(�) = @eF(�)=@fW , where � 2 f�; �g,
equation (6.2.1) can be rewritten as

@fW
@t

+ eA(�)@
fW
@ �

+ eA(�)@
fW
@�

=
@

@�

 eB(�;�)@
fW
@�

+ eB(�;�)@
fW
@�

!

+
@

@�

 eB(�;�)@
fW
@ �

+ eB(�;�)@
fW
@�

!
(6:2:12)

where

eA (�) =

2666664
0 �x �y 0

�uU (�) + �x�
2 U (�) � ( � 2)�xu �yu � ( � 1)�xv ( � 1)�x

�vU (�) + �y�
2 �xv � ( � 1)�yu U(�) � ( � 2)�yv ( � 1)�y

U (�)(�2 � !) �x! � ( � 1)uU (�) �y! � ( � 1)vU(�) U (�)

3777775 (6:2:13)
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with U(�) = �xu+ �yv, and ! = E � �2. Assume the coe�cient matrices of equation (6.2.12)
are locally constant in space and time, and transform to primitive variables. Then, obtain

@WP

@t
+ A

(�)@WP

@�
+ A

(�) @WP

@�
= B

(�;�)@
2WP

@�2
+ B

(�;�)@
2WP

@�2

+
�
B

(�;�)
+ B

(�;�)
� @2WP

@ �@�
(6:2:14)

where

WP = [ � u v p ]T (6:2:15)

A
(�)

= MeA (� )M�1 =

2
666664

U (� ) ��x ��y 0

0 U(� ) 0 ��1�x

0 0 U(� ) ��1�y

0 p�x p�y U(� )

3
777775

(6:2:16)

B
(�;�)

= MB
(� ;�)
1 = ��1

2
666664

0 0 0 0

0 B�;�x;x B� ;�x;y 0

0 B�;�y;x B� ;�y;y 0

� ( � 1)B� ;�p��1 0 0 ( � 1)B�;�

3
777775

(6:2:17)

The eigenvalues of the matrices A
(�)

are

U (�)

U (�)

U (�) + c

q
�2x + �2y

U (�)� c

q
�2x + �2y

9>>>>>>>>=
>>>>>>>>;

(6:2:18)

The eigenvalues of the matrices B
(� ;� )

are

0


�

P r
�1

��1

(2� + �)�1

9>>>>>>=
>>>>>>;

(6:2:19)

where

�1 =

p
M

Re

1

�
(�2x + �2y)
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For the matrices B
(�;�)

, the eigenvalues are

0

p
M

Re

�
2


Pr

�

�
(r� � r�)

�

p
M

Re

�
(� + 3�)

�
(r� � r�) +

(� + �)

�
jr�j jr�j

�

p
M

Re

�
(� + 3�)

�
(r� � r�)� (� + �)

�
jr�j jr�j

�

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(6:2:20)

Abarbanel and Gottlieb (ref. 49) showed that the matrices of equation (6.2.14) can be simulta-

neously symmetrized with the similarity transformation determined by

S =

2
666664

p
�c�1 0 0 0

0 1 0 0

0 0 1 0

1p

�c 0 0

p
 � 1p


�c

3
777775

(6:2:21)

S�1 =

2
666664

1p

��1c�1 0 0 0

0 1 0 0

0 0 1 0

� 1p
( � 1)

�c 0 0
p
p

 � 1
��1c�1

3
777775

(6:2:22)

Using this similarity transformation, rewrite equation (6.2.14) as

@V

@t
+ A(�)@V

@�
+ A(�) @V

@�
= B(�;�)@

2V

@ �2
+ B(�;�)@

2V

@ �2
+
�
B(�;�) + B(�;�)

� @2V

@�@ �
(6:2:23)

where

A(�) = S�1A (�)
S

B(�;�) = S�1B (� ;�)
S

9=
; (6:2:24)

with �; � 2 f�;�g.
De�ne as a discrete computational domain f(�; �) : 1 � � � L, 1 � � � L, and�� = �� = 1g,

where L = N, the number of mesh intervals in either coordinate direction. Let a discrete,

vector function, such as V(i��;j ��) = V(i;j), be denoted by Vi;j . If the spatial derivatives
of equation (6.2.23) are approximated with second-order central di�erences, the semidiscrete
representation

d

dt
Vi;j + LVi;j = 0 (6:2:25)
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is obtained, where

LVi;j = (A(�))i;j�� ��Vi ;j + (A(�))i;j����Vi;j � (B(�;�))i;j�
2
�Vi ;j

�
h
(B(�;�))i;j + (B(�;�))i;j

i
�� ������Vi ;j � (B(�;�))i ;j�

2
�Vi;j (6:2:26)

Then, taking the Fourier transform of equation (6.2.25) yields

�t
d

dt
V̂i;j = ��tL̂V̂i ;j = ZV̂i;j

where the caret indicates a transformed quantity, and

Z = ZC + ZD (6:2:27)

with

ZC = �i�t
�
A(�) sin �� + A(�) sin ��

�

ZD = ��t

�
4B(�;�)sin2

��

2
+ (B(�;�) + B(�;�))sin�� sin �� + 4B(�;�) sin2

��

2

�

and i =
p
�1.

If all terms in the ow equations and the numerical dissipation are evaluated at each step
of the R-K scheme, then the ampli�cation matrix G for an m-stage scheme is a function of one
variable. In particular

G(Z) = I + �1Z + �2Z
2 + � � � + �mZm (6:2:28)

where �1 is a function of the coe�cients of the R-K scheme. (See eq. (6.1.12) for de�nition.) Let

�q(G) be any eigenvalue of G(Z), and let �q(L̂) be any eigenvalue of L̂. Also, let z = ��t�q (L̂).
The eigenvalue �q(G) is related to z as

�q(G) = 1 + �1z + �2z
2 + � � � + �mzm (6:2:29)

The stability of a scheme requires that the ampli�cation matrix satis�es the condition

k Gn k � C for all n. The spectral radius � of a matrix is de�ned as equal to the largest
eigenvalue in absolute value. If the matrix G is normal (i.e., GG� = G�G), then its norm is

equivalent to the spectral radius �(G). Thus, a normal matrix requires that �(Gn) = �n(G) � C:

This condition is equivalent to the Von Neumann condition for stability that requires

�(G) � 1 (6:2:30)

Hence, if Z and G are normal matrices, the condition for stabil ity is

jg(z)j = jg
�
��t�q(L̂)

�
j � 1 (6:2:31)

for all q .

To determine su�cient conditions for stability, consider separately the hyperbolic and

parabolic operators associated with equation (6.2.1). First examine the stability for the Euler
equations (i.e., Re ! 1 in eq. (6.2.1)). The following theorem gives a su�cient condition for

stability:
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Theorem 6.1 Suppose the R-K scheme satis�es the property that

[�i NCFL; i NCF L] � fz 2 C : jg(z)j � 1g (6:2:32)

where NCFL is the CFL number for the R-K scheme. Assume smooth initial data, such that

the Cauchy problem for the Euler equations is well-posed. If the Euler equations are solved with

this R-K scheme and second-order centered di�erence approximations for the spatial derivatives,

the condition

�t [�(�A(�) + �A(�))] � NCFL (6:2:33)

where j�j � 1, and j� j � 1 is su�cient for stability of the linearized problem.

The proof follows directly. Since the matrices A(�) and A(�) are symmetric, the ampli�cation
matrix G(Z) is normal. Furthermore, for a central di�erence scheme, the Fourier transform of

the �rst derivative is a pure imaginary number. Hence, Z = �i�t
�
A(�) sin �� + A(�) sin ��

�
,

and so the result follows (remember that �� = �� = 1).

Now consider the parabolic equation derived from equation (6.2.23) by eliminating the
�rst-order spatial derivatives. The Fourier symbol of the di�erence operator is given by

equation (6.2.27) when A(�)
� 0. Let ND denote the di�usion number of the R-K scheme (i.e.,

ND de�nes the stabil ity interval along the negative real axis). Then, the maximum allowable

time step is ND �tD , where �tD = �x2=(4�) for the 1-D scalar di�usion equation with central
di�erencing, with � being the di�usion coe�cient. A su�cient condition for stabil ity is de�ned
as follows:

Theorem 6.2 Suppose the R-K scheme satis�es the property that

[�ND; 0] � fz 2 C : jg(z)j � 1g (6:2:34)

where ND is the di�usion number for the R-K scheme. Assume smooth initial data, such that

the Cauchy problem for the viscous equations is well-posed. If the viscous equations are solved

with this R-K scheme and second-order centered spatial di�erencing, the condition

max (�t �D) �ND (6:2:35)

with

�D = 4 �

�
B(�;�)sin2

��

2
+ B(�;�)sin2

��

2
+

1

4
(B(� ;�) + B(�;�)) sin �� sin ��

�

is su�cient for stability of the linearized equation.

Since

Z = ��t

�
4

�
B(� ;�)sin2

��

2
+ B(�;�)sin2

��

2

�
+ (B(� ;�) + B(�;�)) sin �� sin ��

�
(6:2:36)

is a negative real symmetric matrix, G(Z ) is again normal. Therefore, the proof is similar to

the proof of theorem 6.1. Note that if the cross-derivative terms are neglected, the inequality of
equation (6.2.35) reduces to

�t
h
4�

�
B(� ;�) + B(�;�)

�i
�ND (6:2:37)
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Next, suppose numerical dissipation in the form of fourth-di�erence terms is added to the
discrete viscous equations. Then

LVi;j = �(B
(�;�))i;j�

2
�Vi;j � (B(�;�))i ;j �

2
�Vi;j

�
h
(B(�;�))i ;j + (B(�;�))i;j

i
�� �� ����Vi ;j

+ "(4)�( ~A(�))�4�Vi;j + "(4)�(~A(�))�4�Vi;j (6:2:38)

and the Fourier symbol of equation (6.2.27) is replaced by Z = ZD + ZAD , where ZD is de�ned
the same as in equation (6.2.27), and

ZAD = �16�t "
(4)
�

�eA(�)
sin

4 ��

2
+ eA(�)

sin
4 ��

2

�
I

with I being the identity matrix.

Lemma 6.3 If only the viscous terms and the fourth-di�erence dissipation terms are considered,

then the condition
max [�t (�D + �AD)] � ND (6:2:39)

with �D the same as given in equation (6.2.35) and

�AD = 16"(4)�

�eA(�) sin4
��

2
+ eA(�) sin4

��

2

�

is su�cient for the linearized stability of the multistage scheme.

The proof is the same as the proof for theorem 6.2. If cross-derivative terms are neglected, the
inequality of equation (6.2.39) becomes

�t
h
4�

�
B(�;�) + B(�;�)

�
+ 16"(4)�

�eA(�) + eA(�)
�i
� ND (6:2:40)

6.3. Time Step Estimate

Now consider the situation where the R-K scheme simultaneously satis�es the properties of
equations (6.2.32) and (6.2.34). Also consider the 1-D case in the � direction. The R-K scheme

then depends on the matrix Z , where Z = ��t
�
iA(�) sin �+ 4B(�;�)sin2 �� =2

�
. Since A(�)

and B(�;�) do not commute, the matrix Z , and thus the ampli�cation matrix G, are no longer
normal matrices. Hence, the Von Neumann condition on the largest eigenvalue of matrix G is

now a necessary, but not a su�cient, condition for stability. Thus, there is no simple way to go
from properties of matrix Z to properties of matrix G. The spectral mapping theorem relates
the eigenvalues of matrix Z to the eigenvalues of matrix G. Since the eigenvalues do not tell

the entire stability story, energy estimates based on norms must be used. However, no simple
relationship exists between the norm of matrix Z and the norm of matrix G.

In practice, a simpli�ed stabil ity condition is used to estimate the time step. There is no

strict mathematical proof of stability with this condition; nevertheless, it seems to work well.
Consider

�tC =
NCFL

�C

�tD =
ND

�D
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where
�C = �(eA(�)) + �(eA(�))

�D = �(eB(�;�))+ �(eB(�;�))+ �(eB(�;�))

Let
1

�t
=

1

�tC
+

1

�tD

so that

�t =
NCFL

�C + (NCFL=ND)�D
(6:3:1)

Schemes in which NCFL � ND have been considered. The time step for each cell in the
computational domain is then computed as

�t =
NCFL 


�C + �D
(6:3:2)

where 
 is the cell area and

�C = �� + ��

�D = (�D)� + (�D)� + (�D)��

with �� and �� de�ned by equation (4.2.5), and

(�D)� =

p
M

Re

�

�P r

�1(x2� + y2�)

(�D)� =

p
M

Re

�

�P r

�1(x2� + y2� )

(�D)�� =

p
M

Re

1

�


h
�(� + 3�)(y�y� + x�x�)+ (� + �)

q
(y2� + x2�)(y

2
�
+ x2

�
)
i

9>>>>>>>>=
>>>>>>>>;

(6:3:3)

For the thin-layer, Navier-Stokes equations, take �D = (�D)� , where � is the direction normal

to the boundary layer.

Remark 6.4 So far, only central di�erencing is considered for the spatial approximations in
estimating a time step for an explicit R-K scheme. Since a numerical-ux function for an
upwind scheme can generally be expressed as the sum of a centered (physical) contribution and

a numerical dissipation contribution, then equation (6.3.1) is also a reasonable estimate for the
time step when an upwind scheme is used.

7. Convergence Acceleration Techniques
7.1. Local Time Stepping

The �rst technique employed to accelerate convergence of the basic explicit time-stepping
scheme to a steady-state solution is local time stepping, where each cell is updated using an

individual time step. For simplicity, the one-dimensional Euler equations are used to understand
the meaning of local time stepping from the discrete point of view. Suppose the Euler equations

are written in the form
@W

@ t
+ A

@W

@x
= 0

If the equations are discretized in an explicit sense, then

�fW = eAfWn
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where the tilde indicates that the vector or matrix is for the complete discrete system. The
block matrix eA is a function of �tmin=�x, with �tmin being the minimum time step permitted

in the domain, and each element of eA being a 3 by 3 matrix. Let the explicit matrix eA for the

system of di�erence equations be preconditioned by the diagonal matrix �, given by

� = Diag
�
�t2I �t3I � � � �tN�2I �tN�1I

�

where

�ti =
�ti

�tmin
i = 2 N � 1

Here, �ti is the largest local time step allowed by stabil ity, and I is a 3 by 3 identity matrix.
This process results in a signi�cant speedup in the transport of information, and an increase by

roughly a factor of two in the convergence rate of explicit schemes.

7.2. Residual Smoothing

The local stability range of the basic time-stepping scheme can be extended by applying
a procedure called implicit residual smoothing. This technique was �rst introduced by Lerat

(ref. 50) for the Lax-Wendro� scheme, and later devised by Jameson (ref. 51) for R-K schemes.
The constant-coe�cient approach of Jameson is discussed in section 7.2.1. Some basic properties
of residual smoothing are also presented. Then, variable coe�cients for implicit smoothing are

discussed. The coe�cients introduced in this paper, and those of Martinelli (ref. 27), are derived
and compared. In section 7.2.3, coe�cients are developed for implicit residual smoothing that

allow a time-step estimate independent of a physical di�usion limit.

7.2.1. Constant coe�cients. The constant-coe�cient, implicit residual averaging of
Jameson (ref. 51) can be applied in two dimensions using the factored form

(1 � ��r� ��)(1 � ��r� ��)R
(m)
i;j = R

(m)
i ;j i (7:2:1)

where the quantity r� is a standard second-di�erence operator, and thus

r� ��R
(m)
i;j = R

(m)
i�1;j � 2R

(m)
i ;j +R

(m)
i+1;j

The quantity � is a smoothing coe�cient, and (�;�) are the coordinates of a uniformly spaced,

computational domain. The residual of the unsmoothed scheme R
(m)
i;j

is de�ned by

R
(m)
i;j = �m

�ti;j


i ;j
[LCW

(m�1)
i ;j + LDW

(0)
i;j + AD(m)] (m = 1;5) (7:2:2)

and computed in the Runge-Kutta stage m, AD(m) is the total arti�cial dissipation at stage

m, and R
(m)
i ;j is the �nal residual at stage m after the sequence of smoothings in the � and �

directions. A tridiagonal system of equations is solved for each coordinate direction to obtain

the unknown residuals R
(m)
i ;j . To determine �� and �� , Jameson (ref. 51) considers the model

problem of equation (6.1.6) without numerical dissipation (i.e., the convection equation). Then,
the semidiscrete equation (6.1.7) becomes

�t
dw

dt
= ��tLwj
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with

�tLwj =
N

2
(wn

j+1 � wn
j�1)

and the Fourier symbol of the di�erence operator ��tL is given by

z = ��tL̂ = �iN sin � (7:2:3)

Let �wj de�ne the correction, or residual, obtained from the implicit smoothing procedure, so

that
(1 � �r�)�wj = �wj (7:2:4)

and the Fourier symbol of equation (7.2.3) is replaced by

z = � i
N sin�

1 + 4� sin2 �
2

(7:2:5)

A su�cient condition for stabil ity is as follows:

max jzj � N� (7:2:6)

for all �, and N� is the Courant number of the unsmoothed scheme. Solving for sin � and cos �
corresponding to the maximum of jz j yields

sin � =

p
1+ 4�

1+ 2�

cos � =
2�

1+ 2�

9>>>=
>>>;

(7:2:7)

Using equations (7.2.7) and the su�cient condition of equation (7.2.6), the smoothing coe�cient
is determined by

� � 1

4

"�
N

N�

�2

� 1

#
(7:2:8a)

or

� � 1

4

"�
�t

�t�

�2

� 1

#
(7:2:8b)

where �t� is the time step of the unsmoothed scheme. In subsequent discussion, this � will be

referred to as the 1-D smoothing coe�cient and will be designated by �1�D.
Instead, consider the di�usion equation

@w

@t
= �

@2w

@x2

If the spatial derivative is again approximated with a central di�erence, and a Fourier transform
is taken of the resulting semidiscrete equation, the Fourier symbol of the product of �t and the

di�erence operator are given by

z = �ND sin2
�

2

where the di�usion number ND = 4�t�=�x2. If the residual smoothing operator of equa-
tion (7.2.4) is applied, then

z =
�ND sin2 �=2

1 + 4�D sin2 �=2
(7:2:9)
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A su�cient stability condition for an R-K scheme is

max jzj � N�
D

for all �, where N�
D is the di�usion number of the unsmoothed scheme. With the same procedure

employed for the convection equation, the smoothing coe�cient is determined as

�D �
1

4

�
ND

N�
D

� 1

�
=

1

4

�
�tD
�t�

D

� 1

�
(7:2:10)

Thus, for the scalar di�usion equation, the smoothing coe�cient �D is proportional to

��t=(�x)2. As will be shown in section 7.2.3, this type of � can be combined with the type of

� given by equations (7.2.8) to yield a formulation suitable for a convection-di�usion equation.

Some properties of implicit residual smoothing are now examined. If residual smoothing is

applied on each stage of an R-K scheme, the stabil ity function given in equation (6.1.11) still

applies, with the z of the original (basic) scheme modi�ed as in equation (7.2.5) or (7.2.9). This

stability behavior leads to the following theorem:

Theorem 7.1 Let L̂ be the Fourier symbol of any discrete spatial operator for the convection-
di�usion equation. Let equation (6.1.11) be the stability polynomial for an explicit m-stage R-K

scheme. Apply implicit residual smoothing, as in equation (7.2.4), after every stage of the R-K
scheme.

If the original scheme is unconditionally unstable, then the smoothed scheme is also uncon-
ditionally unstable. If the original scheme is conditionally stable, then the smoothed scheme can
be made unconditionally stable by choosing ��t su�ciently large.

Proof. Let z and zs be the symbols of the original and smoothed schemes, respectively. Then,

zs =
z

1 + 4� sin2 �=2
(7:2:11)

De�ne r as the position vector corresponding to z. Thus, r emanates from the origin of the

complex domain and has magnitude jzj. Let rs be the position vector associated with zs. If

the original R-K scheme is stable, then r does not terminate outside the stabil ity region S ,
determined by the Von Neumann condition jg(z)j � 1, where g(z) is the stability polynomial.

If the original scheme is unstable, then there is no �t > 0 small enough to allow r to be in

S . Since the denominator of equation (7.2.11) merely acts as a scaling factor of r, the residual

smoothing cannot stabil ize the unstable original scheme.

Suppose � is proportional to �t, as in equations (7.2.8) or (7.2.10). Then, rs does not

terminate outside the boundary of S for any value of �t , since � can always be made su�ciently

large. Moreover, the scheme is unconditionally stable.

Remark 7.2 Even though the explicit R-K scheme can be made unconditionally stable with the

implicit residual smoothing, there is a practical limit on the time step when solving the hyperbolic
problem and taking � / �t2, as in equations (7.2.8). That is, if �t is too large, convergence
slows down.

Lemma 7.3 Apply an explicit m-stage R-K scheme with implicit residual smoothing to the scalar
equation

@w

@t
+ "(4)�x3

@4w

@x4
= 0 (7:2:12)
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where "(4) is a constant coe�cient. Assume that the residual smoothing coe�cient � is
proportional to N2. Then, the symbol of the smoothed scheme vanishes as �t ! 1 and the

stability polynomial g(z)! 1.

Proof. The symbol for the di�erence operator of equation (7.2.12) when implicit residual
smoothing is applied is given by

zs =
�16"(4)N sin4 �=2

1 + 4� sin2 �=2

Using � � N2 and taking �t to be large, then

zs � �
4

N
"(4) sin2

�

2

Therefore, zs ! 0 as �t !1. From equation (6.1.11), it follows immediately that g(z)! 1 as
zs! 0.

Remark As evident from Lemma 7.3, the limit on the extension of stability with the implicit
smoothing and equations (7.2.8) is caused by the requirement to have a certain background

dissipation (i.e., high-frequency damping). If � � N , as in the parabolic problem, then the
symbol zs does not vanish.

The use of constant coe�cients in the implicit treatment (eqs. (7.2.8)) proves satisfactory

(extending the Courant number by a factor of two to three) even for highly stretched meshes
of viscous-ow computations (ref. 16), provided additional support such as enthalpy damping
(ref. 1) is introduced. However, the use of enthalpy damping, which assumes constant total

enthalpy throughout the ow �eld, precludes the solution of problems with heat-transfer e�ects.
By using variable coe�cients �� and �� , which account for the variation in mesh-cell-aspect

ratio, residual smoothing can be applied without the support of enthalpy damping.

7.2.2. Variable coe�cients. The alternating direction implicit (ADI) scheme and the im-

plicit scheme of Lerat (ref. 52) exhibit a functional dependence of variable smoothing coe�cients
on the characteristic speeds �� and �� , as de�ned in section 4.2 of this report. Appendix B shows
this functional dependence. Then, with a 2-D stability analysis similar to the 1-D analysis of

the previous section, variable smoothing coe�cients can be obtained as

�� = max

(
1

4

"�
N

N�
1

1 + r��

�2
� 1

#
; 0

)

�� = max

8<
:1

4

2
4
 

N

N�
1

1 + r�1��

!2

� 1

3
5 ; 0

9=
;

9>>>>>>=
>>>>>>;

(7:2:13)

where again r�� = ��=�� i. The limiting cases are �� ! �1�D; �� ! 0 as r�� ! 0 and
�� ! 0; �� ! �1�D, as r�� !1.

A problem exists with the smoothing coe�cients of equations (7.2.13). In the typical case

of N=N� = 2, the smoothing coe�cients vanish when r�� = 1, making the scheme unstable.
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Martinell i (ref. 27) eliminates this di�culty by modifying the residual smoothing coe�cients of
equations (7.2.13) as follows:

�� = max

(
1

4

"�
N

N�

�(r�� )

1 + r��

�2
� 1

#
; 0

)

�� = max

8<
:1

4

2
4 N

N�

�(r�1�� )

1 + r�1
��

!2

� 1

3
5 ; 0

9=
;

9>>>>>>=
>>>>>>;

(7:2:14)

where

�(r) = 1+ r� (7:2:15)

and the exponent � is taken to be 2=3. The function � is the same function used for scaling the
arti�cial dissipation coe�cients. The introduction of this function seems appropriate because

of the direct relationship between residual smoothing and arti�cial dissipation. For example, a
desired high-frequency, damping behavior of the scheme can be maintained when the dissipation
is increased by increasing the residual smoothing.

The variable smoothing coe�cients �� and �� of equations (7.2.14) cannot be uniquely
determined from a su�cient condition for stabil ity, as the constant coe�cient � was in

equations (7.2.8). Wigton and Swanson (ref. 53) use an additional constraint to derive the
parameters of equations (7.2.14). For completeness the short derivation of reference 53 is
presented.

Consider the following su�cient condition for stability:

N

N�

1

1 + r��

1p
1+ 4��

+
N

N�

1

1 + r�1
��

1p
1 + 4��

� 1 (7:2:16)

as derived in appendix B. Let the Courant numbers for the two coordinate directions � and �

be given by

N� =
�tact

�t�
= N

��

�� + ��
=

N

1 + r��

N� =
�tact

�t�
= N

��

�� + ��
=

N

1 + r�1
��

9>>>>=
>>>>;

(7:2:17)

where �tact is the 2-D allowable time step for convection, and�t� and �t� are the corresponding
1-D time steps. If the Courant number N in equation (7.2.16) is replaced according to

equations (7.2.17), the result is

N�

N�

1p
1 + 4��

+
N�

N�

1p
1+ 4��

� 1 (7:2:18)

As suggested by lemma 7.3, �� and �� should be as small as possible and still maintain stability.
With this objective in mind, �� +�� is minimized subject to equality in equation (7.2.18). Apply

the method of Lagrange multipliers and consider the function

F(��; ��) = �� + �� + !

 
N�

N �

1p
1 + 4��

+
N�

N�

1p
1+ 4��

!
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After equating the partial derivatives of F (�� ; ��), with respect to �� and ��, to zero, obtain

N�
1

(1 + 4��)
3=2

= N�
1

(1 + 4��)
3=2

(7:2:19)

Now, solving for
p
1 + 4�� and substituting the resulting expression into equation (7.2.16) yields

N

N�
1

1 + r��

1p
1 + 4��

"
1+

1 + r��

1 + r�1
��

�
N�

N�

�
�1=3

#
� 1 (7:2:20)

With the equality of equation (7.2.20) holding, and using equations (7.2.17), obtain the

smoothing coe�cients of equations (7.2.14). As shown in reference 53, the function � arises
without any consideration of numerical dissipation terms. The role of the � function is to
connect the values of � corresponding to low-aspect-ratio and high-aspect-ratio cells.

The variation of �� from equations (7.2.14) with r�� is shown as a solid line in �gure 8(a).

For this curve, the ratio of Courant numbers N=N� is assumed to be 2. Observe that �� ! �1�D
for r�� ! 0, and �� ! 0 for r�� ! 1. In the case of r�� = 1, �� = �� = �1�D (a value of 0.75

when N=N� = 2). Based upon numerical calculations for inviscid ows using typical inviscid
meshes, smoothing coe�cients �� and �� that are constant with a value of about 0.4 result in
rapid convergence. Values for �� � 0:75 and/or �� � 0:75 can cause a signi�cant slowdown

in convergence. To provide improved smoothing coe�cients, when r�� � 1 the formulas of
equations (7.2.14) can be replaced with

�� = max

(
1

4

"�
N

N�
1

1 +  r��

�2
� 1

#
; 0

)

�� = max

8<
:1

4

2
4
 
N

N�
1

1 +  r�1
��

!2
� 1

3
5 ; 0

9=
;

9>>>>>>=
>>>>>>;

(7:2:21)

where  is a parameter to be speci�ed. Here, the connection function� is removedby introducing

 . Figure 8(a) shows the curve representing �� when N=N� = 2 and  = 0:25. For the case of
r�� = 1, �� is 0.39.
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To investigate stabil ity using the smoothing coe�cients of equations (7.2.21), consider the
su�cient stability condition

N

N�
1

1 + r��

sin ��

�� ��
+

N

N�
1

1 + r�1��

sin ��

����
� 1 (7:2:22)

for all �� and �� . In equation (7.2.22)

�� = 1+ 2��
�
1� cos ��

�
�� = 1+ 2��

�
1� cos ��

�
9=
; (7:2:23)

and r�� = ��=�� . This condition comes from the 2-D stability analysis given in appendix B.
(See eq. (B18).) If r�� � 1, the condition of equation (7.2.22) reduces to approximately

N

N�

sin ��

��
� 1 (7:2:24)

for all �� . Using equations (7.2.7), obtain

N

N�
1p

1 + 4��
� 1 (7:2:25)

Substituting for �� according to equations (7.2.21), the inequality equation (7.2.25) is satis�ed.

Now, if r�� � 1, the condition of equation (7.2.22) reduces to approximately

N

N�
sin��

��
� 1 (7:2:26)

for all �� . From equations (7.2.7) and the de�nition of �� in equations (7.2.21), the inequality of

equation (7.2.26) is satis�ed. Consider the case of r�� = 1. Assume �� = �� and �� = �� . Then
equation (7.2.22) becomes

~F � 1 (7:2:27)

for all �� , where

~F =
N

N�

sin��

��
2

It can be shown that

~Fmax �
N

N�

" �
1+ 8��

�5�
1+ 4��

��
1 + 10��

�4
# 1
2

1p
1 + 4��

Then

~Fmax � 0:9
N

N�
1p

1 + 4��
(7:2:28)

By substituting for �� and taking  � 0:11, the condition of equation (7.2.27) is satis�ed. From

numerical experiments, this estimate for  seems to be conservative. A value for  of 0.125
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worked well for both central and upwind schemes. Moreover, for central schemes  = 0:25 also
works without causing stabil ity problems.

Calculations were performed for a case of inviscid, transonic ow over an RAE 2822 airfoil to
evaluate the variable smoothing coe�cients of equations (7.2.14) and (7.2.21). A typical inviscid

mesh with 224 by 32 cells was used. Figure 8(b) shows the convergence histories corresponding
to the formulations of Martinelli (eqs. (7.2.14)) and Swanson (eqs. (7.2.21)). Convergence is

measured by the logarithm of the root-mean-square of the residual of the continuity equation.
For each computation, the basic explicit scheme of equation (6.1.4) and a multigrid method
(described in section 7.3) were employed. The average rate of reduction of the residual was

de�ned by Rf = (rate)NRi , where R is the residual for the continuity equation, the subscripts f
and i mean �nal and initial values, respectively, andN denotes the number of multigrid cycles.

With the coe�cients of equations (7.2.14), the average rate of residual reduction is 0.889, while
with the coe�cients of equations (7.2.21), the average rate of residual reduction is 0.789. As
expected, the two formulations exhibit only small di�erences in convergence behavior in the case

of turbulent ow calculations, since the high-aspect-ratio cells of the mesh, usually de�ned to
resolve the boundary layer, determine the convergence rate.

7.2.3. Removal of di�usion limit. The di�usion restriction on the time step (eq. (6.3.1))
can be a signi�cant factor in viscous regions of a ow �eld, causing excessive restrictions
on the allowable time step �t . In this section the di�usion-based, smoothing coe�cient of

equation (7.2.10) is util ized to construct a new smoothing parameter that allows the removal of
this di�usion restriction.

Considering the thin-layer form of the 2-D Navier-Stokes equations allows use of the
smoothing coe�cient of equations (7.2.21) in the streamwise-l ike (�) direction. A possible

formulation for the normal � direction depends on a di�usion-type � near the surface, and
a convection-type � when the viscous e�ects are no longer important. Consider the dependency
in equation (7.2.10) on the ratio of the actual �t to the �t of the basic explicit scheme. To

remove the di�usion limit on the time step, the actual time stepmust be independent of di�usion
e�ects. Thus, set ND = 0 in equation (6.3.2), giving

�t = �tact =
N 


�� + ��
(7:2:29)

where 
 is the area of the mesh cell being considered. In the part of the boundary layer where

di�usion e�ects dominate, de�ne the time step of the unsmoothed scheme (�t�) by

�t� = (�tD)� =
ND 


(�D)�
(7:2:30)

where

(�D)� =

p
M

Re

�

�Pr

�1(x2� + y2� )

Then de�ne

(�D)� =
1

4

�
�tact

(�tD)�
� 1

�
(7:2:31)
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If (�tD)� = �tact, �D = 0: This means that the full parabolic stability limit is being used for
the physical di�usion terms. Since the numerical dissipation of the scheme is not included in

the analysis, replace equation (7.2.31) with

(�D)� =
1

4

�
C1

�tact
(�tD)�

� 1

�
(7:2:32)

where C1 is a constant. Equation (7.2.32) accounts for any possible inuence on the stabil ity

caused by a single evaluation of the physical viscous terms in the multistage time-stepping
scheme. By using equations (7.2.29) and (7.2.30) to replace �tact and (�tD)� , respectively,
equation (7.2.32) can be rewritten as

(�D)� =
1

4

�
C1

N

ND

(�D)�

�� + ��
� 1

�
(7:2:33)

which can be approximated by

(�D)� =
1

4
C1

(�D)�

�� + ��
(7:2:34)

Either equation (7.2.33) or equation (7.2.34) can be used, provided the constant is de�ned
properly. Both equations successfully remove the di�usion restriction on the time step. In this

paper, the simpler form of equation (7.2.34) is used, and has also been considered by Radespiel
and Kroll (ref. 54). Numerical experiments have shown that a satisfactory value for C1 is 5.

For the full Navier-Stokes equations (including all viscous terms), a coe�cient �D for the
streamwise-like direction (�) should also be de�ned. Using the form of (�D)� in equation (7.2.34),

(�D)� is de�ned as

(�D)� =
1

4
C1

(�D)�

�� + ��
(7:2:35)

where

(�D)� =

p
M

Re

�

�P r

�1(x2� + y2�)

The variable coe�cient of equation (7.2.34) generally cannot be used alone. For example, in
an airfoil ow, (�D)� goes to 0 too fast at the leading edge, resulting in a 0-value in the inviscid
region. This di�culty is overcome by calculating �� as

�� = max[(�D)�; (�C)� ]

where (�C )� is de�ned by equations (7.2.21). In a similar manner, (�D)� in equation (7.2.35) is

rede�ned.

According to the theory presented in reference 55, the residual smoothing is evaluated only
on the even steps of an R-K time scheme. In practice, the residual smoothing is evaluated during

every stage, which is more expensive but produces a more robust algorithm.

7.3. Multigrid Method

The concept of multigrid acceleration of an iterative scheme was �rst suggested by Fedorenko
(ref. 56). The fundamental ideas of this approach currently used in many applications are

principally due to reference 57. Although most of the theory developed for the multigrid method
is for ell iptic problems, a number of e�ective multigrid solvers (refs. 3, 58, 59, and 60) have been

constructed for the Euler equations of gas dynamics, which are hyperbolic. Transonic and
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subsonic ows have been computed with these solvers. Some multigrid methods (refs. 19, 20,
22, and 23) have also been devised for the numerical solution of the compressible Navier-Stokes

equations. In section 7.3.1, the basic theory of the multigrid process is briey reviewed. Then,
the operators used in the present method are de�ned. Section 7.3 concludes with a discussion

of the various elements of the multigrid technique of this work.

7.3.1. Basic concepts of multigrid methods. In the simplest sense, the multigrid method

involves applying a sequence of grids to solve a discrete problem. More speci�cally, a faster
rate of development of the solution on a �ne grid is achieved by approximating the �ne-grid
problem on successively coarser grids in the sequence. With suitable coarse-grid approximations

of the �ne-grid problem, the low-frequency error components on the �ne grid appear as high-
frequency error components on the coarser grids. The low-frequency components on the �ne grid

where the discrete solution is desired are precisely the error components that dramatically slow
the convergence of single-grid schemes. Thus, with a good high-frequency damping scheme, an
e�ective multigrid process (i.e. , much more rapid removal of low-frequency errors than a single-

grid scheme) can be constructed. As will become evident, the driving scheme for the multigrid
process is not only important for providing smoothing on each grid, but also for removing high-

frequency errors resulting from interpolation of corrections for the �ne-grid approximation.

Two additional advantages are derived from displacing part of the e�ort in solving a set of
discrete equations to coarse grids. One advantage is that the larger mesh spacing permits larger

time steps, meaning that information is propagated rapidly in the domain of interest. Moreover,
for explicit time-stepping schemes such as the multistage schemes described previously in this
report, the increased time step is particularly important because the allowable time step depends

on the speed of sound. This acoustic dependence is even more critical for viscous ows. A
second bene�t of the coarse grids is that they require less computational work. For example,

in two dimensions, the computational e�ort needed is decreased roughly by a factor of four on
successively coarser meshes. Thus, the objective of the multigrid process is to spend much more
time on the coarse grids than on the �ne grid.

The basic ideas of the multigrid process are revealed by considering the continuum problem

LW (x; y) = S(x; y)

�W (x; y) = �(x; y)

where the �rst equation is associated with the domain 
, and the second equation is associated
with its boundary @
. The symbols L and � are general nonlinear, di�erential operators, and

both S and � are source terms. Let G0 ; G1; ::: ; GN be a set of grids, where GN is the �nest
grid, and each successively coarser grid Gk(k � N � 1) is generated by eliminating every other
mesh line in each coordinate direction of the next-�ner mesh. The discrete problem onGN is as

follows:

LNWN (x; y) = SN(x; y) (x; y 2 GN )

�NWN (x; y) = �N (x; y 2 @GN )

)
(7:3:1)

and WN is the exact discrete solution. If wN (x; y) is an approximate discrete solution,

equations (7.3.1) can be written as

LNwN = SN + RN

�NwN = �N + (RB)N

)
(7:3:2)
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where RN and (RB)N are residual functions. Subtracting equations (7.3.2) from equa-
tions (7.3.1) gives the residual equations for the GN problem. That is,

LNWN � LNwN = �RN

�NWN � �NwN = �(RB)N

These equations can be adequately approximated on GN�1 if the residual functions and
corrections (WN � wN ) are smooth. Smoothing is accomplished by performing an iteration

with an e�ective high-frequency damping scheme. The approximations of the residual equations
on the coarser grid GN�1 are

LN�1WN�1 � L(I
N�1
N

wN ) = � IN�1
N

RN

�N�1WN�1 � �(IN�1
N

wN ) = � IN�1
N

(RB)N

9=
; (7:3:3)

where IN�1
N

is a restriction operator. Note that if RN = 0, thenWN�1 = I
N�1
N

wN , and once a
steady state is reached on the �ne grid, all corrections on the coarse grid are 0. Furthermore, for a

linear problem, the two terms on the left-hand side of equations (7.3.3) can be combined and the

error equation L(error) = �IN�1
N

RN is obtained. In general, the operator Im
l

is used to indicate
restriction when l > m and prolongation when l < m. Thus, a restriction operator transfers
information from a �ne grid to a coarse grid, and a prolongation operator (i.e., interpolating

polynomial) transfers information from a coarse grid to a �ne grid. Equations (7.3.3) can be
rewritten as

LN�1wN�1 = SN�1

�N�1wN�1 = (SB)N�1

where
SN�1 = RN�1 + FN�1

(SB)N�1 = (RB)N�1 + (FB)N�1

and
FN�1 = I

N�1
N

(�RN)+ LN�1(I
N�1
N

wN )

(FB)N�1 = I
N�1
N

(�RB)N + �N�1(I
N�1
N

wN )

9=
; (7:3:4)

Thus, the discrete problem on GN�1 has the same form as that on GN , except the forcing
functions of equations (7.3.4) are added to the residual functions. An improvement to the
approximate solution wN can be obtained by adding a coarse-grid correction. The �ne-grid

solution is then given by

wN  wN + I
N
N�1(wN�1 � I

N�1
N

wN )

where the correction (wN�1� I
N�1
N

wN ) is an approximation to the smoothed functionWN�wN .

In this work, the smoother chosen to solve equations (7.3.3) is a multistage R-K scheme of
the type discussed in section 6. Thus, a time derivative is added to the steady-state equations,

and the resulting equations are advanced in pseudotime with several iterations of the multistage
method. Usually, one complete R-K time step is performed on the �nest mesh, and two or three
time steps are performed on coarser meshes.

Instead of immediately passing a correction from GN�1 to GN , the solution wN�1 and

residual RN�1 can be restricted to the grid GN�2. Iteration sweeps can then be performed to
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obtain a smooth approximation of the correction function WN�2 �wN�2. If this correction is
passed to GN�1, iterations are performed, and the correction of GN�1 is transferred to GN , a

multigrid cycle of three grids is completed. This cycle is called a V cycle.

There are other �xed-cycle strategies (i.e., W cycle), and variable-cycle strategies that

depend on a prescribed residual level, or a certain slowdown, in smoothing rate before changing
to a coarser grid problem (ref. 57). For each coarse grid Gk in a cycle, the full current

approximation wk and the initial (basic) approximation wk+1 (the approximation on grid Gk+1
that is transferred to grid Gk) are stored. The approximation wk is the sum of the Gk correction
and the basic approximation. Brandt (ref. 57) refers to a scheme that stores the full, current

approximation rather than only the correction as the full approximation storage (FAS) scheme.

7.3.2. Transfer operators. The intergrid transfer operators employed in the present
multigrid method were introduced by Jameson (ref. 3) and assume that the unknowns are stored
at the center of a mesh cell. The restriction operator for the residual is de�ned by

I kk+1Rk+1 =
1


k

4X

l=1

(
k+1Rk+1)l (7:3:5)

where the residual function Rk+1 is expressed in the usual way as

Rk+1 =
1


k+1
Lk+1wk+1

with Lk+1 and 
k+1 denoting the spatial-discretization operator and the cell area, respectively,
on grid Gk+1. Thus, the modi�ed residuals Lk+1wk+1 of the four �ne-grid cells corresponding

to a coarse-grid cell are summed. In this manner, the residual transfer operation is conservative.
To transfer the solution from Gk+1 to Gk , the following volume-weighted operator is used:

I kk+1wk+1 =

P4
l=1 (
k+1wk+1)lP4

l=1 (
k+1)l

Again, the summations are over the four �ne-grid cells, and the operator conserves mass,
momentum, and energy. The prolongation of corrections from Gk to Gk+1 is accomplished

with bilinear interpolation.

In elliptic multigrid methods, the residual-restriction operator is frequently de�ned as the
adjoint of the correction-prolongation operator, meaning that one operator is the transpose of the

other. (See appendix C for discussion of the adjoint property.) Such a relationship is convenient
for analyzing multigrid schemes (ref. 61). In typical multigrid methods using a cell-vertex, �nite-

volume formulation for spatial discretization (refs. 3 and 24), the restriction operator is de�ned
with full weighting (ref. 61), and bilinear interpolation is used for the prolongation operator.
For full weighting, the restriction operator Ik

k+1
is de�ned by

Ikk+1(Ri;j )k+1 = 4�2x�
2
y(Ri;j)k+1

where � is a standard averaging operator, and thus

�xRi;j =
1

2
(Ri+1=2;j +Ri�1=2;j )
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and

�2xRi;j =
1

4
(Ri+1;j+ 2Ri;j +Ri�1;j)

These operators are adjoint on a uniformly spaced mesh. The operators used in this paper do
not have the adjoint property.

Suppose the bil inear-interpolation operator is replaced with a piecewise, constant-prolongation

operator. This new prolongation operator transfers the same correction to all �ne-grid cells that
comprise a coarse-grid cell. Using the inner product de�nition of functions, this prolongation

operator can be shown to be the adjoint of the restriction operator of equation (7.3.5). (See ap-
pendix C.) However, this type of prolongation is not considered an appropriate choice. That is,
if the Navier-Stokes equations are solved, prolongation does not satisfy the requirement for the

intergrid transfer operators, which states that the sum of the order mp of the prolongation op-
erator, and the ordermr of the restriction operator must exceed the order 2m of the di�erential

operator being considered (ref. 61). With the piecewise, constant prolongation, mp+mr = 2. In
the case of the bilinear interpolation, mp+mr = 3 > 2m = 2, and the requirement is satis�ed.
Note that frequently a restriction operator is chosen that is not the adjoint of the prolongation

operator.

7.3.3. Elements of present method. Section 7.3.2 states that a forcing function is required
to properly de�ne a coarse-grid problem for the multigrid method. After initialization of the

coarse-grid solution, the forcing term Pk is constructed as

Pk = Ikk+1Rk+1 �Rk(I
k
k+1wk+1)

where Rk+1 is the sum of the residual Rk+1 and forcing function Pk+1, and 0 < k < N . If

k = N � 1, then RN = RN . In the case of the multistage time-stepping scheme, the (q + 1)st
stage becomes

w
(q+1)
k = w

(0)
k � �q+1 �tkRk

where

Rk = Rk(w
(q)
k )+ P

(0)
k

Rk(w
(q)
k ) =

1


k

�
L
C
k w

(q)
k + LDk w

(0)
k �AD(q)

�

and the superscripts C andD mean that the discrete operators are associatedwith the convection
and physical, viscous terms, respectively. The quantity AD represents the appropriate arti�cial
dissipation terms for a given stage. The residuals on Gk are smoothed with an R-K scheme.

Information is transferred from one grid to another with a �xed cycle strategy.

Both V-type and W-type cycles have been considered. Figures 9(a) and 9(b) show the
structure of these W-type cycles with four and �ve levels, respectively. The comparable V-type

cycles consist of the �rst and last legs of these W-type cycles. Although the W-type cycle
becomes complex as the number of grids increases, it has a recursive de�nition. Thus, the
W-type cycle is essentially as easy to program as the V-type cycle. The work of these cycles is

as follows for V-type cycle

Work MG <
4

3
Work FINE

and for W-type cycle
Work MG < 2 Work FINE

The subscript MG indicates multigrid cycle, and the subscript FINE refers to one time step
on the �nest mesh. The work associated with grid transfer operations has been neglected. At
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Figure 9. Structure of multigridW-type cycle; letter designations are de�ned as S: solve equations, R: restrictsolution

and residuals, and P: prolongate corrections.

a given grid level, additional R-K steps can be performed in both cycles. In particular, the
application of two R-K steps on GN�1 and three R-K steps on all successively coarser grids is

an e�ective strategy. Multiple coarse-grid time steps reduce the number of cycles necessary to
reach a prescribed level of convergence (i.e., engineering accuracy, meaning three to four orders
of magnitude of reduction in the residual). However, the computational time required to realize

this level is about the same with or without the additional steps. The principal advantage of
these multiple iterations is the improved smoothing of residuals, which is important for di�cult,

nonlinear-ow problems.

Without additional coarse grid sweeps, the W-type cycle generally requires about the same

amount of computer time for convergence (engineering accuracy) as the V-type cycle. The
advantage of the W-type cycle is that it provides improved robustness. Therefore, a W-type
cycle is used in the applications of this paper.

When solving the Navier-Stokes equations, the viscous terms are computed on each mesh in
the multigrid process rather than only on the �nest mesh (i.e., as in the convective coarse-grid

correction scheme of Johnson (ref. 62). Computing on each mesh provides improved convergence
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behavior for low Reynolds number (i .e., O(1000)) ow cases. For turbulent ows, the viscosity
associated with Reynolds stresses is evaluated only on the �nest grid, and then determined on

each successively coarser grid by a simple averaging of surrounding �ner grid values. Averaging
is done to obtain a consistent estimate of the eddy viscosity on coarse meshes when an algebraic

turbulence model is being applied. The arti�cial dissipation model for the �nest grid is replaced
on coarser grids with a simple, constant-coe�cient, second-di�erence dissipation model. On each
grid, the boundary conditions are updated at every R-K stage.

In describing the multigrid method, section 7.3.1 states that on coarse grids approximations
are constructed for the residual equations at the boundary points (eqs. (7.3.3)). In constructing

coarse grid approximations, the solution at the boundary points on a coarse grid is driven
by the residuals for the boundary points on the next �ner grid. However, for the present cell-

centered, �nite-volume scheme, such a treatment for the boundary points is not computationally
convenient (i.e. , the boundary points do not lie on the boundaries themselves, but are located
in auxil iary cells outside of the domain). Instead, the �ne-grid boundary conditions discussed in

section 5 are applied on the coarse grids, and �ne-grid accuracy is not maintained at coarse-grid
boundary points. When transferring coarse-grid corrections to a �ner grid, only the changes

in the solution at the boundary points caused by R-K time stepping are used. Although this
method of treating boundary points can possibly a�ect the asymptotic convergence rate of the
multigrid method, it does not change the �ne-grid boundary values if the method converges.

The robustness of the multigrid method is enhanced signi�cantly by smoothing the corrections
for the �ne grid solution. That is,

W (n+1) = W (n) +�Wtot

where
�Wtot = �Wf +�Wc

The quantity �Wf is the solution correction from the �nest grid, and �Wc is the resultant

solution correction from the coarse grids. This smoothing of the corrections reduces the high-
frequency oscillations introduced by the bilinear interpolation of the coarse-mesh corrections and

allows convergence of the scheme for a broader range of arti�cial dissipation coe�cients. The
factored scheme described for implicit residual averaging with constant coe�cients (�� = ��=0:1)
is used for the smoothing.

The full multigrid (FMG) method is employed to provide an improved initial solution on the
�nest grid in the multigrid procedure. The FMG method initiali zes the solution on a coarser

grid of the basic sequence of grids, and iterates the solution for a prescribed number of cycles
using the FAS scheme. The solution is then interpolated to the next �ner grid. The process is

repeated until the �nest grid is reached. In this paper, three re�nement levels are used for a
standard mesh density (e.g., 320 by 64 cells). The �rst and second levels include three and four
grids, respectively, and 50 cycles are performed on each. There are �ve grids in the �nal level.

8. Turbulence Modeling

The numerical solution of the instantaneous Navier-Stokes equations for turbulent ows
requires computing power well beyond what is currently available (ref. 63). To make turbulent

ow problems tractable using existing computers, a time-averaged form of the Navier-Stokes
equations must be solved. If the appropriate expansions of Favre variables (ref. 64) are
substituted for the ow variables in equation (3.1), and the resulting equations are time averaged,

the mass-averaged form of the Navier-Stokes equations is obtained. These equations have the
same form as their laminar ow counterparts, except that the stress tensor is augmented by the

Reynolds stress tensor, the heat ux vector is augmented by the heat ux terms associated with
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turbulence, and additional mean-energy dissipation terms appear (in many cases, these terms
can be neglected). Closure for this system of time-averaged equations is realized by using the

eddy-viscosity hypothesis, which states that the Reynolds stress and heat ux terms are related
to mean ow-�eld gradients. Moreover, the e�ective viscosity is obtained by simply adding the

turbulent viscosity to the molecular viscosity. The Reynolds heat ux terms are approximated
using the constant, Prandtl-number assumption. Thus, the e�ective nondimensional transport
coe�cients for di�usion and heat conduction are

� = �l + �t (8:1a)

and

k = kl + kt =
� �

Pr

�
l
+
� �

Pr

�
t

(8:1b)

respectively. The subscript l refers to laminar values, and the subscript t refers to turbulent
values. The laminar and turbulent Prandtl numbers are 0.72 and 0.9, respectively.

For aerodynamic computations, the primary requirement for an eddy-viscosity model is to

provide a good representation of turbulence to allow accurate predictions of mean ow-�eld
characteristics. The desire to util ize such capability on a routine basis creates the need for
turbulence models with a high degree of numerical compatibility. That is, these models must

demonstrate a favorable interaction with numerical schemes, and must not prevent reliable and
e�cient calculations. This section presents the two turbulent viscosity models applied in this

paper. Speci�c modi�cations of the originally published forms of the models used to improve
physical modeling and/or numerical compatibil ity are discussed.

The basic turbulence model considered is the widely used algebraic model of Baldwin and
Lomax (ref. 65). This two-layer model de�nes the nondimensional turbulent viscosity as

�t = min [(�t)i ; (�t)o] (8:2)

where the subscripts i and o denote inner and outer values, respectively. The viscosity in each
layer is proportional to the product of a length scale and a velocity scale. In the inner part of
the boundary layer,

(�t)i = Re � L2 
 (8:3)

where Re = Re=(
p
M), 
 is the magnitude of the vorticity vector, L is the length scale given

by L = KDd , K = 0:4 (Von K�arm�an's constant), D represents the Van Driest damping factor,
and d denotes the distance from the wall. The damping factor D is de�ned as

D = 1 � exp

�
�d+

A+

�

d+ = d

q
Re �w (�l)max

�w

9>>>>>=
>>>>>;

(8:4)

where A+ = 26. In this de�nition of the law-of-the-wall coordinate d+, the original shear stress

at the wall is replaced with the maximum laminar value. Substituting the maximum laminar
value prevents the eddy viscosity from vanishing when the shear stress goes to 0 at a separa-
tion point. The laminar value eliminates a nonphysical behavior of the turbulence and generally
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removes numerical di�culties. In the outer part of the boundary layer, the turbulent viscosity
becomes

(�t)o = Re CClau Ccp � Fwake FKleb(d) (8:5)

where CClau = 0:0168 (Clauser's constant), the additional constant Ccp = 1:6, and

Fwake = min

 
dmax Fmax ; Cwake dmax

U 2
dif

Fmax

!
(8:6)

with Fmax being the maximum value of the function

F(d) = d 
D (8:7)

across the layer, and dmax is the value of d at which Fmax occurs. The quantity Udif is the
di�erence between the magnitudes of the maximum and minimum velocity vectors that occurs

across the layer. The function FKleb(d) represents the Klebano� intermittency factor, and is
de�ned by

FKleb(d) =

"
1 + 5:5

�
CKleb

d

dmax

�6#�1
(8:8)

Baldwin and Lomax (ref. 65) de�ned the constant Cwake to be 0.25. This value is generally
unsatisfactory in transonic airfoil ows because it produces oscillatory movement of a shock
wave. A remedy for this problem is to set Cwake = 1:0.

The Baldwin-Lomax (B-L) model just described is also used for wake regions. For wake

ows, the Van Driest damping factor is set to unity. The B-L model can also be used to
represent transition to turbulence. However, the speci�cation of a transition location according

to experiment is generally preferred.

When implementing the B-L model, care must be exercised when determining the maximum
of the function F (d), especially for complex ows. Multiple peaks can occur in this function in
the vicinity of separation. The second peak is chosen in this case. Due to the rapid evolution

of the numerical solution with the multigrid method, the turbulent viscosity is updated every
multigrid cycle. Less frequent evaluation can cause either a slowdown or a stall in convergence.

The B-L turbulence model represents a balance of production and dissipation of turbulence.

When the boundary layer on a solid surface is subjected to an adverse pressure gradient strong
enough to cause ow separation, the production and dissipation of turbulence balance break
down. The inner part of the boundary layer responds immediately to the adverse pressure

gradient, but the outer boundary layer experiences a delayed reaction. This delayed behavior
creates a disequil ibrium of the two regions. If the size of the separated ow region is large

enough to alter the surface-pressure distribution, then the history e�ects cannot be neglected
in the turbulence model. In general, both the convection and di�usion of turbulence should be
modeled to accurately predict the turbulent stresses.

Johnson and King (ref. 66) proposed a model to account for nonequilibrium e�ects and used

the two-layer, algebraic model of Cebeci and Smith (ref. 67) as a foundation for their model. In
principle, any equilibrium model, such as the B-L model (ref. 65), could be chosen. The basic

idea of the Johnson-King (J-K) model is to �nd an appropriate nonequilibrium factor to modify
the variation of the equilibrium outer-eddy viscosity. The nonequilibrium factor is determined
so that a transport equation for the maximum shear stress in the boundary layer is satis�ed.

In reference 68, the implementation of a modi�ed version of the J-K nonequilibrium model is
presented. Reference 69 gives a similar modi�ed form. The elements of these forms of the J-K

model are described in the remainder of this section.
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In reference 68, a turbulence reference quantity is de�ned as

Gm =

�


�t

�

�
m

(8:9)

where the index m denotes the maximum of G across the shear layer. This quantity is then

used to replace the maximum turbulent shear stress divided by density (i.e., the correlation of

uctuating velocity components given by (�u0v0)m appearing in the original J-K model (ref. 66)).

The advantage of using Gm is that it is invariant with respect to coordinate systems. In the
formulation of reference 66, the turbulent viscosity is constructed as an exponential blending of
the inner and outer viscosities. That is,

�t = (�t)o

�
1 � exp

�
(�t)i
(�t)o

��
(8:10)

The inner viscosity is given by

(�t)i = Re �D2K d

q
Re gm (8:11)

with

D = 1 � exp

�
�d

A+�w

p
�w max (�wgm; �w)

�
(8:12)

An appropriate value of A+ is 17 (rather than the equilibrium value of 26) (ref. 70). The original
J-K model requires determining the edge of the boundary layer, since the foundation model was

the Cebeci and Smith model. This requirement is removed in references 68 and 69 by using the
B-L model. Moreover, the outer turbulent viscosity is expressed as

(�t)o = � Re CClauCcp�FwakeFKleb(d) (8:13)

where � is the nonequilibrium factor previously mentioned and the other quantities are de�ned
the same as for the B-L model.

Assuming that G is proportional to the turbulent kinetic energy, and introducing a time
derivative, the ordinary di�erential equation in reference 66 governing the trajectory of the
maximum shear stress is replaced with

@Gm

@t
+ um

@Gm

@x
+ vm

@Gm

@y
+ a1

Gm

Lm

h
Gm

1=2 �
�
Geq

�1=2
m

i
+G

3=2
m Dm = 0 (8:14)

where um and vm are the Cartesian velocity components at the location of Gm. The quantity�
Geq

�
m is the equil ibrium value of G at the location ofGm, and the length scale Lm is de�ned

as

Lm = 0:4dm (
dm

�
� 0:225) (8:15)

Lm = 0:09� (
dm

�
> 0:225) (8:16)

with � being the boundary-layer thickness. An estimate of � given in reference 71 is 1:9dmax. In
the original J-K model, the di�usion term Dm is de�ned as

Dm =
a2F(�)

� [0:7� (dm=�)]
(8:17)
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where

F(�) = j�1=2 � 1j (8:18)

The constants a1 and a2 are taken to be 0.25 and 0.5, respectively. With the F (�) given by
equation (8.18), there is a singular-l ike (nonphysical) behavior of the di�usion term at � = 1.
In reference 68, F(�) is expressed as

F(�) = max
�
0 ; �1=2 � 1

�
(8:19)

and thus has a smooth behavior at � = 1. This F (�) makes the di�usion term 0 in regions
of reverse ow (where � < 1). The use of equation (8.19) produces greater di�erences between
the predicted shock position and the shock position indicated by experiment for a transonic,

shock-induced, separated airfoil ow with strong nonequilibrium e�ects.

If g�2m is substituted forGm in equation (8.14), the resulting linear equation is given by

@gm

@t
+ um

@gm

@x
+ vm

@gm

@y
+ Sm �

1

2

�
Dm +

a1
Lm

�
= 0 (8:20)

where the source term is

Sm =
a1
2Lm

�
geq

��1
m

gm

Equation (8.14) is strictly valid along the curve determined by the maximum shear stress.

However, equation (8.14) is solved along the solid surface of interest to facil itate the numerical
solution method. The misalignment between these surfaces creates errors in the convection

terms (ref. 68). To reduce these errors, the velocity components um and vm are replaced with
their projections onto the wall boundary. The spatial discretization of the modi�ed equation
is accomplished by applying the �nite-volume technique to the layer of mesh cells adjacent to

the solid surface. A fourth-di�erence dissipation term is appended to this semidiscrete equation.
The same �ve-stage R-K scheme described in section 6 in conjunction with local time stepping

is used to numerically integrate the equations in time. With implicit treatment of the linear
source term in equation (8.20), a Courant number of about 3 can be used. The computation of
gm, and thus the turbulent viscosity, must be adequately converged to allow convergence of the

uid dynamic system of equations. The turbulence model is applied once every time step in the
solution of the Navier-Stokes equations, and R-K time steps are performed for each update of

the turbulence �eld.

Once the distribution of gm is known, a new variation for the nonequilibrium factor � is
calculated with the following equation:

�n+1 = �n
�

gm
(
�t=�)m

�
(8:21)

where �n is � at time level n (ref. 70).

An alternative technique used to solve for gm that is equal to (�u0v 0)
�1=2
m is a space

marching procedure (ref. 66). When applying this procedure, el iminate the time derivative

of equation (8.20), transform to arbitrary curvilinear coordinates (�; �), and assume gm is
independent of the normal coordinate � (i.e., a � curve coincides with the transport path of
gm). Then, obtain

Um
@gm

@�
+ Sm =

1

2

�
Dm +

a1
Lm

�
(8:22)
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with Um = �xum + �yvm. A discrete equation for (gm)i+1 can be written as

f(geq)
�1
m

�
A1 + (geq)m

�
gi (gm)i+1 = (A1 + gm)i +

�
A1

Lm

a1
Dm

�
i

(8:23)

where the index i means evaluated at the previous � location,

A1 =
a1�s�

2LmUm

with�s� representing distance along the integration path, and Um denoting the magnitude of the

velocity vector at the actual location where gm occurs. Again, for convenience, the integration
path is taken to be coincident with the geometry being considered. This particular approach

generally seems more robust, and thus is used for all J-K computations. The original argument
in favor of the time-dependent technique concerned simplicity in extending to three dimensions.
However, reference 72 indicates that the steady equation for gm can be solved easily with �rst-

order, upwind di�erencing and point-Gauss-Seidel relaxation. Reference 73 provides additional
discussion on implementation and various forms of the J-K model.

9. Concluding Remarks

The elements of a class of explicit multistage time-stepping schemes with centered spatial
di�erencing and multigrid are de�ned and discussed in this report. Additional understanding

is gained from analysis of a number of components of these schemes. Through this approach,
the bene�t of a local mode analysis in evaluating boundary-point di�erence stencils for the
numerical dissipation is demonstrated. The stability of the multistage Runge-Kutta schemes

is examined. Hyperbolic and parabolic operator splitting is applied to determine su�cient
conditions of stability for the Euler and Navier-Stokes (in the absence of convection) equations,

respectively. The di�culty in rigorously deriving a su�cient condition for the full Navier-Stokes
equations is discussed. A simple time-step estimate that works well in practice is given. The basic
properties of the implicit process of residual smoothing for extending stability are given. Two

forms of variable coe�cients for the residual smoothing procedure are considered. The formulas
introduced in this report are shown to perform much better than the formulas of reference 20

for typical meshes used to compute inviscid, airfoil-ow solutions. With these formulas, a new
set of variable coe�cients is constructed that eliminates the general requirement of including a
di�usion limit in the time-step estimate. The implicit residual smoothing is also used as the basis

for one of several techniques that are included to enhance the robustness of the basic multigrid
method.

Both the equilibrium model of Baldwin and Lomax and the nonequilibrium model of Johnson

and King are considered for turbulence closure. The implementation of these models, including
two alternatives for the Johnson-King model, is described in detail. Some modi�cations to the
original formulations of the models are made to improve numerical compatibility of the models

(i.e., make it easier to converge numerical algorithm with the model), and in the case of the
Johnson-King model, to simplify implementation and improve prediction capability.

NASA Langley Research Center

Hampton, VA 23681-2199

January 3, 1997
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Appendix A
Equations for Boundary Points

Consider the elements of the solution vector

W 0 = [ c u v s ]
T

as dependent variables, where c is the speed of sound and s is the entropy. The Euler equations
relative to the rotated Cartesian coordinate system (xt; xn) can be written as

@W 0

@t
+ A00

@W0

@xt
+ B00

@W0

@xn
= 0 (A1)

where
A00 = A0 cos �+ B 0 sin�

B 00 = �A0 sin �+ B 0 cos �

and

A0 =

2
66664

u c( � 1)=2 0 0

2c( � 1)�1 u 0 �c2( � 1)�1

0 0 u 0

0 0 0 u

3
77775

B0 =

2
66664

v 0 c( � 1)=2 0

0 v 0 0

2c( � 1)�1 0 v �c2( � 1)�1

0 0 0 v

3
77775

In equation (A1), � is the angle that the rotated coordinate system makes with the unrotated
system. Suppose the Riemann invariants of 1-D gas dynamics are changed to dependent

variables. This is done by �rst assuming that the ow is locally homentropic, and by rede�ning
the matricesA0 and B0 as the reduced matrices

A0 =

2
64

u c( � 1)=2 0

2c( � 1)�1 u 0

0 0 u

3
75

B0 =

2
64

v 0 c( � 1)=2

0 v 0

2c( � 1)�1 0 v

3
75

9>>>>>>>>>>>=
>>>>>>>>>>>;

(A2)

Then, with the matrix

Q�1 =

2
64

0 cos � � sin�

1=
p
2 �( � 1) sin �=(2

p
2) ( � 1) cos �=(2

p
2)

1=
p
2 ( � 1)sin�=(2

p
2) �( � 1) cos �=(2

p
2)

3
75
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the reduced form of the solution vectorW 0 can be transformed to a new vector that is a function
of the Riemann invariants. In addition, the similarity transformation with Q�1 and

Q =

2
64

0 1=
p
2 �1=

p
2

cos� �
p
2 sin �=(� 1) �

p
2 sin �=( � 1)

sin � �
p
2 cos �=( � 1) �

p
2 cos �=(� 1)

3
75

can be used to diagonalize the reduced form of the matrix B 00. Thus, if equation (A1), with A0

and B0 de�ned by equations (A2), is premultiplied by Q�1, the result is

Q�1@W
0

@t
+
�
Q�1A00Q

�
Q�1

@W 0

@xt
+
�
Q�1B 00Q

�
Q�1

@W 0

@xn
= 0 (A3)

IfQ�1 is considered locally constant, and the variation ofW 0 in the tangential direction is taken

to be negligible, equation (A3) becomes

@fW
@t

+ �B00
@fW
@xn

= 0 (A4)

where �B00 is a diagonal matrix of the eigenvalues (qn; qn + c; qn� c) of B 00 , and fW is the vector
of characteristic variables de�ned by

fW =

�
qt

1p
2

 � 1

2
R+ 1p

2

 � 1

2
R�

�T

with

R+ = qn +
2c

� 1

R� = qn �
2c

� 1

qt = u cos � + v sin �

qn = �u sin� + v cos �
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Appendix B
Development of Residual Smoothing Coe�cients

To obtain insight into an appropriate form for variable smoothing coe�cients, consider �rst
the approximate factorization scheme�

I +
�t



�� ��

eA� �I + �t



�� ��eB

�
�fWi;j = �Ri ;j (B1)

where �fWi ;j is the product of the solution vector for the Euler equations and the volume 
 (as
determined by a transformation Jacobian), R i;j is the residual vector for the system, and (�; �)
are arbitrary curvilinear coordinates. The operators � and � are standard averaging and central

di�erence operators, respectively. Thus,

��
fW i;j =

1

2

�fW i+1=2;j +
fW i�1=2;j

�

��
fW i;j =

�fW i+1=2;j �
fWi�1=2;j

�
The transformed, ux-Jacobian matrices are de�ned as

eA = �xA + �yB

eB = �xA + �yB

9=
; (B2)

The spectral radii of these matrices are as follows:

�eA = �(eA) =
��




�eB = �(eB) =
��




9>>=
>>; (B3)

where �� and �� are the characteristic speeds de�ned in equations (4.2.5). If the matrices eA andeB are approximated as eA = �eAIeB = �eBI

respectively, then equation (B1) can be replaced with�
I +

�t



�eA�� ��

� �
I +

�t



�eB�� ��

�
�fWi;j = �Ri ;j (B4)

when the scalings are taken to be locally constant. De�ne

�� =
�t



�eA

�� =
�t



�eB

9>>=
>>; (B5)

as the implicit smoothing coe�cients for the � and � directions, respectively. Using equa-
tions (B3), and taking

�t =



�� + ��
(B6)
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the smoothing coe�cients of equations (B5) become

�� =
��

�� + ��

�� =
��

�� + ��

9>>>>=
>>>>;

(B7)

Now, consider the case where parabolic implicit smoothing operators are used instead of
hyperbolic implicit smoothing operators. In particular, consider the implicit �nite-volume
method of Lerat (ref. 52). This scheme includes two stages. The �rst stage is a physical stage in

which the change of the solution vector of the Euler equations is evaluated using a Lax-Wendro�
scheme. To remove the time step limit of the explicit scheme, a mathematical stage is applied

in the following integral form:

ZZ

i ;j

(�W)�d
 + !
�t2

2

Z
�
i+ 1

2; j
[�

i�1
2 ;j

b�2eA
�
n � r(�W)�

�
d� =

ZZ

 i;j

�Wd
 (B8)

ZZ

i; j

�Wd
+ !
�t2

2

Z
�
i; j+1

2
[�

i; j�1
2

b�2eB [n � r(�W ] d� =

ZZ

i; j

(�W)
�
d
 (B9)

where �W is the change in the solution vector, the superscript (�) indicates a provisional value,

the overbar refers to a value from the explicit physical stage, the quantity 
i;j is a mesh cell
volume, the vector n is a unit normal to the boundary curve �, and ! is a constant taken to be

�1/2. In equations (B8) and (B9), the eigenvalues �̂eA and �̂eB , respectively, are related to the

spectral radii of equations (B3) as

�̂eA =
�eA 
q
x2� + y2�

�̂eB =
�eB 
q
x2
�
+ y2

�

Assuming that the quantities inside the integral signs associated with the boundary curves
are locally constant, and that the curvil inear coordinates � and � are orthogonal, the integral
equations (B8) and (B9) can be approximated by

�W�

i;j �
1

4

�t2


i;j

8><
>:

0
@b�

2eA�2



1
A
i+1

2 ;j

h
(�W)�i+1;j� (�W)�i;j

i
9>=
>;

+
1

4

�t2


i;j
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>:

0
@b�
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1
A
i�1
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h
(�W)�i;j � (�W)�i�1;j

i
9>=
>; = (�W)i;j (B10)
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4

�t2
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1
A

i;j� 1
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�
(�W)i ;j � (�W)i ;j�1

�
9>=
>; = (�W)�i ;j (B11)

where the unknowns are located at the cell centers. If the coe�cients

b�2eA�2



and b�2eB�2



(which are evaluated at the cell faces) are taken to be locally constant, and the time step is
de�ned as equation (B6), then the smoothing parameters �� and �� depend upon

�
��

(�� + ��)

�2
�

��

(�� + ��)

�2

9>>>>=
>>>>;

(B12)

respectively, which are the squares of the smoothing coe�cients obtained for the ADI scheme.

The results from the 1-D stability analysis of section 7.2.1, and the understanding of the
functional dependence of the smoothing coe�cients on �� and �� , provide a foundation for
developing �� and ��, respectively. To determine formulas for �� and �� , the 2-D stability of

a multistage, time-stepping scheme with implicit residual smoothing is examined. Consider the
2-D, scalar, hyperbolic wave equation

@w

@t
+ a

@w

@x
+ b

@w

@y
= 0 (B13)

Using central di�erence approximations for the spatial derivatives, a semidiscrete form for
equation (B13) is written as

�t
dw

dt
= �

N�

2

�
wn
i+1;j � wn

i�1;j

�
�

N�

2

�
wn
i;j+1 � wn

i;j�1

�
(B14)

where the Courant numbers

N� = ��
�t



= (a�y)

�t




N� = ��
�t



= (b�x)

�t




9>>=
>>; (B15)
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By taking the Fourier transform of equation (B14), the following is obtained:

�t
dbw
dt

= zbwn

where the Fourier symbol z is given by

z = �i
�
N� sin�� +N� sin ��

�
(B16)

The caret indicates a transformed quantity, and �� and �� are the Fourier angles for the
two coordinate directions. If implicit residual smoothing is applied, the Fourier symbol of

equation (B16) is replaced by

z = �i
N� sin�� +N� sin ��

����

where
�� = 1+ 2��

�
1 � cos ��

�

�� = 1+ 2��
�
1 � cos ��

�
9=
; (B17)

A su�cient condition for stabil ity can be written as

max jzj � N� (B18)

for all �� and �� , where N
� is the Courant number of the unsmoothed scheme. Let

eF = jz j = N�

sin��

����
+N�

sin��

�� ��

Then,

eF � N�

sin ��

��
+N�

sin ��

��

or eF � N�f(��) +N�g(��)

and eFmax � N�fmax +N�gmax

Then, a su�cient condition for stabil ity is given by

N�fmax +N�gmax � N� (B19)

From equation (7.2.7) of section 7.2.1, it follows that

fmax =
1p

1 + 4��

gmax =
1p

1 + 4��

9>>>=
>>>;

(B20)

Substituting equation (B19) into equations (B20) yields

N�
1p

1+ 4��
+N�

1p
1 + 4��

�N � (B21)
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But

N� =
�tact

�t�
= N

��

�� + ��
=

N

1 + r��

N� =
�tact

�t�
= N

��

�� + ��
=

N

1 + r�1��

9>>>>=
>>>>;

(B22)

where r�� is the ratio of the modi�ed characteristic speeds (��=�� ) and is also proportional to
mesh-cell-aspect ratio. Thus, equation (B21) becomes

N

N�
1

1 + r��

1p
1+ 4��

+
N

N�
1

1 + r�1
��

1p
1 + 4��

� 1 (B23)

In the cases of low-aspect-ratio cells (r�� � 1) and high-aspect-ratio cells (r�� � 1), equa-
tion (B23) can be replaced by

N�

N�
1p

1 + 4��
� 1

and
N�

N�
1p

1 + 4��
� 1

respectively. Thus, write

�� = max

(
1

4

"�
N

N�
1

1 + r��

�2
� 1

#
; 0

)

�� = max

8<
:1

4

2
4
 

N

N�
1

1 + r�1
��

!2

� 1

3
5 ; 0

9=
;

9>>>>>>>=
>>>>>>>;

(B24)

Note that these expressions are related to the smoothing coe�cients of equations (B12) for the

implicit method of Lerat.

The formulas of equations (B24) can also be obtained by substituting the appropriate time
step estimates into the 1-D smoothing coe�cient of equations (7.2.8) in section 7.2.1. That is,

the time step of the smoothed scheme is de�ned as in equation (B6), and the time step of the
unsmoothed scheme is a 1-D time step.
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Appendix C
Multigrid Transfer Operators

When constructing a multigrid method, appropriate intergrid transfer (i.e., restriction and

prolongation) operators must be chosen. Often, these operators are selected so that they are
adjoint operators. Such a choice provides convenience in the analysis of the multigrid scheme

(i.e., two-level multigrid analysis). In this section, the natural choice for the restriction operator
of the residual function when a cell-centered, �nite-volume scheme is used for discreti zation is
considered. Moreover, the restriction process involves simply summing the �ne-grid residuals for

the �ne-grid cells that comprise the coarse-grid cell. A piecewise constant prolongation operator
is shown to be an adjoint operator.

Consider a 1-D domain 
 = fx 2 < : 0 � x � Lg. De�ne a �ne grid Gf and a

coarse grid Gc that cover the domain 
, such that Gc � Gf . Generate Gc by eliminating
every other mesh point of Gf (delineated by crossed lines in �g. C1). Let the mesh interval

(�xj)f =
�
xj+1=2 � xj�1=2

�
f of Gf be constant. De�ne h = hf = (�xj)f . Then, the coarse-

grid mesh interval is hc = 2h. Let R be the residual function, and let (v)h be a correction to
the �ne-grid solution. Assume that the unknowns are stored at the center of a mesh cell. The

restriction operator for the residual is de�ned by

I2hh Rh =
1

hc

2X

l=1

(hfRf )l

Suppose that the prolongation operator I h2h for the coarse-grid correction simply transfers the

same correction to the �ne-grid cells that determine the coarse-grid cell. The operators I2hh and

Ih
2h

are adjoint operators if

(Rh ; I
h
2hv2h) = [(Ih2h)

�Rh ; v2h ] = (I2hh Rh ; v2h) (C1)

h

2h

j

k

Figure C1. Cells of two grid levels.
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where (� ; �) denotes an inner product, and the asterisk indicates transpose. To show that these
operators satisfy equation (C1), consider the inner product de�nition for functions. Let the

index k denote a coarse-grid cell, and let the indices j and j � 1 represent the corresponding
�ne-grid cells. Then

(I 2hh Rh ; v2h)2h =
X
k

�
hj

hk
(Rj)h +

hj�1

hk
(Rj�1)h

�
(vk)2hhk

and
(Rh ; I

h
2hv2h)h =

X
j even

(Rj )h (vk)2hhj +
X
j even

(Rj�1)h (vk)2h hj�1

=
X
j even

�
(Rj )h hj + (Rj�1)h hj�1

�
(vk)2h

Thus, these operators are shown to be adjoint operators. Note that if the piecewise constant

prolongationoperator is replaced by a linear interpolation operator, the operators are not adjoint.
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